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ABSTRACT
Objectives  To evaluate the effectiveness of 18 different 
host biomarkers in differentiating bacterial from non-
bacterial acute febrile illness (AFI) in resource-limited 
settings, specifically in Brazil, Malawi and Gabon.
Design  Multinational, cross-sectional study.
Setting  The study was carried out across multiple primary 
healthcare facilities, including urban and rural settings, 
with a total of three participating centres. Recruitment took 
place from October 2018 to July 2019 in Brazil, May to 
November 2019 in Gabon and April 2017 to April 2018 in 
Malawi.
Participants  A total of 1915 participants, including 
children and adults aged 21–65 years with a fever 
of≤7 days, were recruited through convenience sampling 
from outpatient clinics in Brazil, Gabon and Malawi. 
Individuals with signs of severe illness were excluded. 
Written consent was obtained from all participants or their 
guardians.
Intervention  This is not applicable as the study primarily 
focused on biomarker evaluation without specific 
therapeutic interventions.
Primary and secondary outcome measures  The 
primary outcome measure was the ability of each host 
biomarker to differentiate between bacterial and non-
bacterial AFI, as evaluated by area under the receiver 
operating characteristic (AUROC) curves. Secondary 
outcomes included the performance of individual 
biomarkers across the different study sites and in a 
multivariable setting.
Results  A Kruskal-Wallis test, adjusted by Benjamini-
Hochberg, was performed for each biomarker to identify 
covariates with a significant difference in the distribution 

of biomarker values. The analysis revealed that country 
of origin (Brazil, Gabon, Malawi), age, sex and malaria 
status significantly impacted biomarker distribution 
(p≤0.001). The most widely known biomarkers, such as 
white blood cell (WBC) count and C-reactive protein (CRP), 
demonstrated the best performance in distinguishing 
between bacterial and non-bacterial infections, with 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ Diverse evaluation: This study is an extensive 
evaluation of 18 host biomarkers across low- and 
middle-income countries to differentiate bacterial 
from non-bacterial infections.

	⇒ Methodological alignment: The study protocol aligns 
with Food and Drug Administration-approved clas-
sifications for distinguishing between bacterial and 
non-bacterial infections, enhancing methodological 
rigour.

	⇒ No control group: The absence of a control group 
limits the ability to establish baseline biomarker per-
formance or to assess asymptomatic carriers.

	⇒ Time and geographical variability: The short en-
rolment period and heterogeneity of acute febrile 
illness causes may limit the generalisability of find-
ings across different times and geographical con-
texts, particularly in Asia.

	⇒ Subjectivity in classification: The two-step clinical 
classification process may introduce subjectivity, 
particularly as clinicians had access to haematology 
biomarker results during classification, potentially 
biasing results.
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AUROCs reaching up to 0.83 (0.77–0.88) for WBC count and 0.71 (0.59–
0.82) for CRP. However, none of the evaluated novel host biomarkers 
exhibited high performance (AUROC<0.70 in most cases) and variations 
in biomarker performance were observed across the three settings. 
Multivariable analyses demonstrated that while the best combination of 
biomarkers achieved higher AUROCs, the increase was modest (1–13%), 
suggesting that the interaction of biomarkers contributed minimally to 
predictive accuracy.
Conclusions  There is a continued need for innovation in the host-
biomarker space as the available markers do not meet the needs of 
diverse populations around the globe. This highlights the importance 
of targeted evaluations in non-severe patients in multiple settings to 
understand the true potential for real-life use. The findings highlight that 
not one-marker fits all settings and novel innovations remain urgently 
needed.
Trial registration number  Clinical trial number: NCT03047642.

INTRODUCTION
Globally, acute febrile illness (AFI) is one of the leading 
reasons individuals, particularly children aged less than 
5 years, present to primary healthcare facilities.1 AFI has 
various causes, both infectious and non-infectious, that 
vary according to geography, age group and season.1 In 
malaria-endemic settings, malaria was long considered 
the primary cause of all fevers; however, the introduction 
of rapid diagnostic tests (RDTs) for malaria in the past 
decade has disproved this. Modelling estimates suggest 
that approximately 70% of all fevers can be attributed to 
non-malarial causes, even in malaria-endemic settings.2 
In the Integrated Management of Childhood Illness, 
introduced by the WHO and UNICEF in the mid-1990s 
and subsequently implemented in more than 100 coun-
tries, the standard ‘fever’ algorithm currently includes a 
malaria RDT but no diagnostic test for other infections.3 
Hence, at the primary care level, the only evidence-based 
treatment decision that can be made relies on the malaria 
RDT, resulting in extremely high levels of antibiotic use 
in malaria-negative patients.4 In this context of limited 
knowledge about the causes of AFI and limited diagnostic 
and human capacity, it is unsurprising that healthcare 
providers prescribe antibiotics to avoid negative outcomes 
in their patients.

To assist healthcare providers with clinical decision-
making, a simple diagnostic tool is required to differ-
entiate patients with AFI of bacterial and non-bacterial 
aetiology and provide appropriate care. In well-resourced 
settings, in both high-income countries (HICs) and 
low- and middle-income countries (LMICs), some non-
specific host biomarkers are used for this purpose, 
most frequently C-reactive protein (CRP) and procalci-
tonin (PCT), although these biomarkers are less useful 
in settings with a higher frequency of comorbidities.5 
Thus, in 2015, an international group of experts was 
convened to define the target product profile (TPP) of 
such a tool, specifically for low-resource settings, to guide 
product development and implementation as part of inte-
grated treatment management guidelines.6 Since then, 
the ongoing viral pandemic (SARS-CoV-2) has further 

highlighted the challenge of differential diagnosis and 
shows yet again that better antimicrobial stewardship 
interventions are needed to counter the overprescribing 
of antibiotics in patients with viral infections.7

Host biomarkers other than CRP and PCT have been 
evaluated for distinguishing bacterial from non-bacterial 
infections, including human neutrophil lipocalin (HNL), 
heparin-binding protein and chitinase 3-like protein 1.8 
There are also some commercially available tests. Immu-
noXpert, from MeMed, uses a biomarker combination 
comprising CRP, interferon gamma-inducible protein 
10 (IP-10) and TNF-related apoptosis-inducing ligand, 
while FebriDx, from Lumos Diagnostics, uses an MxA 
and CRP biomarker combination. While these biomarker 
signatures show promise, they have only been evaluated 
in limited settings. Any potential impact of co-infections 
or comorbidities, common in LMICs, on their effective-
ness is unknown. Other characteristics of host-biomarker 
studies that hamper direct comparisons include: (1) just 
one/a few biomarkers in the study; (2) small sample sizes, 
increasing the probability of recruiting unrepresentative 
study populations; (3) narrow population subgroups 
(eg, children only, hospitalised only, respiratory infec-
tions only), limiting the generalisability of study results 
to the broader AFI population; (4) studies conducted in 
one country, so co-infections/comorbidities may not be 
comparable with those of other countries; (5) retrospec-
tive studies that used convenience sampling and case-
control study designs, increasing the risk of bias; and (6) 
the lack of standard definitions for classifying bacterial 
versus non-bacterial infections.9

Here, we describe the Biomarker for Fever Diagnostic 
(BFF-Dx) study, specifically designed to evaluate host 
biomarkers to distinguish bacterial from non-bacterial 
infections in line with the published TPP and the final use 
case of such diagnostic tests. To our knowledge, this is the 
only study to evaluate host biomarkers in the intended 
target population (non-severe patients), prospectively, in 
multiple settings with a large sample set. We evaluated 18 
host biomarkers in three distinct settings, in Brazil, Gabon 
and Malawi with the main objective of providing a perfor-
mance comparison of host biomarkers in the non-severe 
AFI population from resource-limited settings, with the 
goal of overcoming many of the previously described 
limitations (eg, sample size, retrospective vs prospective, 
focused populations, biased analysis).10 The described 
comparison was conducted within the pragmatic context 
of diagnostic product development and aimed to identify 
host biomarkers or biomarker combinations for utilisa-
tion in next-generation RDTs.

METHODOLOGY
Study settings
This multinational, cross-sectional study was conducted 
in Brazil, Gabon and Malawi; Gabon and Malawi were 
selected as high-malaria endemicity settings, while Brazil 
was selected as a low-malaria endemic setting. The study 
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sites were UPA Manguinhos and Family Health Clinics 
Armando Palhares in Rio de Janeiro, Brazil; the Clin-
ical Trials Unit Centre of Medical Research Lambaréné 
(CERMEL), Lambaréné, Gabon; and Malawi Epide-
miology and Intervention Research Unit (MEIRU), 
Chilumba campus, Malawi. The enrolment sites were an 
urban primary healthcare facility, a hospital in a semi-
rural setting and a rural primary healthcare facility in 
Brazil, Gabon and Malawi, respectively. Participants 
were recruited from October 2018 to July 2019, May to 
November 2019 and April 2017 to April 2018, in Brazil, 
Gabon and Malawi, respectively. Reporting complies with 
the STARD-15 (Standards for Reporting of Diagnostic 
Accuracy Studies 2015) checklist.

Study population and study procedure
Participants were obtained through convenience 
sampling and included both children and adults, aged 
between 2 and 65 years, who presented at the outpatient 
clinics with a history of fever of ≤7 days duration (Brazil 
and Gabon) or fever at presentation (Malawi). Patients 
with signs of severe illness were not included in the study. 
The overarching study protocol was slightly adapted to 
each site due to local requirements (logistical or ethical). 
Detailed criteria for inclusion by study sites have been 
published previously.10 Outcomes were based on the TPP 
criteria and while no patient input was used, external 
expert input was used to define the target population and 
criteria. Only patients who met the eligibility criteria and 
who provided written consent (patient or guardian for 
children) were enrolled in the study. Data and samples 
were systematically collected and analysed as previously 
described. To ensure consistent quality and compara-
bility of data, the same standard operating procedures 
were used at all sites (for data collection and laboratory 
testing).10

Patient and public involvement statement
None

Bacterial/non-bacterial classification and biomarker selection 
and testing
A two-step process was used to classify the patients into 
‘bacterial’ and ‘non-bacterial’ groups. First, the cause of 
fever (bacterial/non-bacterial) was classified according to 
laboratory-determined parameters (‘electronic group’). 
The electronic group was based on predefined and 
widely accepted laboratory parameters, including direct 
pathogen detection, a fourfold increase in antibody titre 
or a positive PCR or antigen RDT result. The list of tests 
performed is described in detail in by Escadafal et al.10 
Next, cases that could not be classified by laboratory-
determined parameters were assessed by a panel of three 
independent clinical experts. The patient’s history and 
clinical and laboratory data were provided to the experts. 
Clinical expert’s assessments were then compared. If 
the three-panel members unanimously assigned a diag-
nostic label, patients were considered to have ‘bacterial’ 

or ‘non-bacterial’ infections; if two out of three-panel 
members reported a classification of ‘bacterial’ or ‘non-
bacterial’, these patients were considered to have ‘prob-
able bacterial infection’ or ‘probable non-bacterial 
infection’, respectively.

Data were analysed based on three groups of patients: 
(1) the ‘electronic group’, that is, subjects with a cause 
of fever defined based on laboratory parameters; (2) 
the ‘strict group’ which comprised the electronic group 
and the patients that were unanimously classified by the 
clinical panel of three experts; and (3) the ‘loose group’ 
which comprised the electronic and strict groups as well 
as those patients for whom two of the clinical experts 
agreed they had either probable bacterial or probable 
non-bacterial infection. Subjects with undetermined 
causes of fever according to the three classification 
criteria considered (‘electronic group’, ‘strict group’, 
‘loose group’) were excluded from the statistical anal-
ysis. This outcome-oriented approach, based on methods 
developed for host-biomarker studies previously, was used 
to ensure the total intended-use population of any future 
test was represented in the final analysis.10 11

The evaluated biomarkers were selected based on 
previously reported performances and haematological 
markers as well as CRP were included as comparators 
(table 1 and online supplemental table 1 and 2).8 12

At the end of data collection, all biomarker data were 
analysed to assess the percentage of missing values and 
the percentage of values below the lower limit or above 
the upper limit of detection of the used tests. Biomarkers 
with more than 50% of missing data or more than 95% of 
saturated values below the lower limit of quantification of 
the used test, were excluded from the following statistical 
analysis.

Statistical analysis
Kruskal-Wallis analysis and definition of covariates influence on 
biomarkers
A Kruskal-Wallis test, adjusted by Benjamini-Hochberg, 
was conducted for each biomarker to determine which 
covariates exhibited statistically significant differences 
in the distribution of biomarker values. The covariates 
studied were country (ie, the country of origin of the 
patients), age, sex, malaria status, comorbidities (ie, 
presence of one or more diseases among cardiovascular, 
neurological, respiratory, renal, genitourinary, connec-
tive tissue, cancer or infectious diseases), malnutrition 
status calculated based on WHO body mass index criteria, 
self-reported use of antibiotics prior to visiting the health 
facility, axillary temperature≥38°C and positive result to 
Chikungunya test. The Kruskal-Wallis test was performed 
for each of the three patient groups defined in the previous 
section (‘electronic’, ‘strict’, ‘loose’). The results of the 
Kruskal-Wallis test allowed the identification of covariates 
that most significantly impacted the biomarker distribu-
tion (p≤0.001, adjusted by Benjamini-Hochberg). The 
most significant covariates were considered for defining 
subgroups of patients in which the following univariate 
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analyses were performed or included as covariates in the 
multivariable analyses.

Univariate analysis
As an exploratory step, the ability of each biomarker to 
discriminate between bacterial and non-bacterial infec-
tions was assessed by the area under the receiver operating 
characteristic curve (AUROC). In particular, subjects 
were ranked based on the values of the single variable of 
interest (ie, based on ordered values) and, using this as a 
score, calculated the ROC curve and the corresponding 
area under the curve. Such univariate analysis was 
conducted for each patient group (‘electronic’, ‘strict’, 
‘loose’) and specific patient subgroups (Malaria status, 
Country and Age).

However, since the univariate analyses did not yield 
satisfactory results, we also explored multivariable models 
to potentially improve the predictive capabilities by incor-
porating a broader range of information.

Multivariable analysis
Multivariable classification models were developed to assess 
the discrimination ability of combinations of biomarkers 
and covariates. For the multivariable analysis, both linear 
(logistic regression) and non-linear classification models 
(RuleFit) were explored.13 The candidate features for 
each model included a group of host biomarkers and 
some additional covariates (age, temperature, fever dura-
tion, diastolic blood pressure, respiration rate and pulse 
rate). Regarding host-biomarkers, three different groups 
of biomarkers were considered: haematology biomarkers 
only (ie, white blood cell (WBC), neutrophil, red blood 
cell, lymphocyte counts), protein biomarkers only (ie, 
novel biomarkers+CRP) and haematology plus protein 
biomarkers (ie, all biomarkers).

For each patient subgroup and each candidate feature 
set, three multivariable models were developed: (1) a 
logistic regression model with stepwise (SW) feature 

Table 1  Novel biomarkers were identified in the literature and evaluated in the BFF-Dx study, including sample type used, 
evaluation method and sample origin

Abbreviation Biomarker name Sample type Evaluation method Sample origin

AGP A-1-acid glycoprotein EDTA-plasma Luminex B, G, M

C2 Complement 2 EDTA-plasma Luminex B, G, M

C4b Complement C4b EDTA-plasma Luminex B, G, M

CHI3L1 Chitinase-3-like protein 1 EDTA-plasma Luminex B, G, M

CRP C-reactive protein EDTA-plasma CRP NycoCard/
NycoCardReader II, ELISA

B, G, M

Gal-9 Galectin-9 EDTA-plasma Luminex B, G, M

HBP Heparin-binding protein EDTA-plasma ELISA B, M

HNL Human neutrophil lipocalin Heparin-activated plasma 
time-controlled activation*

ELISA M

EDTA-plasma ELISA B, G, M

HP Haptoglobin EDTA-plasma Luminex B, G, M

IFN-gamma Interferon gamma EDTA-plasma Luminex B, G, M

IL-4 Interleukin-4 EDTA-plasma Luminex B, G, M

IL-6 Interleukin-6 EDTA-plasma Luminex B, G, M

IP-10 Gamma-induced protein 10 EDTA-plasma Luminex B, G, M

LBP Lipopolysaccharide binding protein EDTA-plasma Luminex B, G, M

NGAL Neutrophil gelatinase-associated 
lipocalin

Frozen heparin-activated 
plasma

Luminex M

EDTA-plasma Luminex B, G, M

PCT Procalcitonin EDTA-plasma Luminex; ELISA B, G, M

sPLA2 Secretory phospholipase 2 EDTA-plasma Luminex B, G, M

sTREM-1 Soluble triggering receptor 
expressed on myeloid cells 1

EDTA-plasma Luminex B, G, M

TRAIL TNF-related apoptosis-inducing 
ligand

EDTA-plasma Luminex B, G, M

*Whole blood samples were collected in lithium heparin tubes and activation was performed within 60 min prior to freezing and subsequent 
ELISA testing.29 All biomarkers were tested using the same standard operating procedures (SOPs) and all sites were trained on the SOPSs. 
For CRP and PCT, different devices were used at different sites, repeat testing was performed at the central facility (NMI).
B, Brazil; BFF-Dx, Biomarker for Fever Diagnostic; G, Gabon; M, Malawi.
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selection; (2) a logistic regression model with features 
selected based on recursive feature addition (RFA; a 
variant of the method proposed in14); (3) RuleFit, a non-
linear model in which a set of rules from an ensemble 
of decision trees (typically from a tree-based model like 
a random forest or gradient boosted trees) is generated 
and then fit a sparse linear regression model (regular-
ised with least absolute shrinkage and selection operator 
(LASSO)), where the features are the rules generated 
from the trees.13 14

To further tackle the number of biomarkers and vari-
ables included in the best models, we introduced an 
additional selection step, employing a plateau-seeking 
approach. The primary objective of this approach was to 
pinpoint a concise set of variables capable of attaining 
an AUROC score similar to that of our comprehensive 
model which already incorporated the most impactful 
and previously selected variables. This was to ensure that 
our model was not only effective in terms of performance 
but also efficient in its variable inclusion.

Each model was trained and tested using the following 
pipeline. The data were randomly split into training 
and test sets (80% and 20% of the data, respectively) 
stratifying by the outcome variable. Missing data in the 
training and test sets were imputed using the MICE 
(multiple imputation by chained equation) algorithm. 
The n_imp parameter for MICE imputation was set to 1, 
resulting in a single imputed data set; however, the impu-
tation process was integrated into a robust bootstrapping 
pipeline, generating ten independent data sets. This 
approach ensured variability in our results, stemming not 
only from the MICE imputation but also from the boot-
strapping process. This dual approach guarantees that 
each imputed data set is distinct.15 All quantitative vari-
ables were scaled into the range (0,1) by subtracting their 
minimum value and dividing by the difference between 
the maximum and minimum values in the training set. 
The categorical variables with n categories were encoded 
using n-1 binary ‘dummy’ variables. The model was then 
trained on the imputed and scaled training set and its 
performance was assessed on the imputed and scaled test 
set by computing the AUROC. The AUROC on the test 
set was also calculated for single-host biomarkers, to allow 
a fair comparison of the performance of the multivariable 
classification models versus single-host biomarkers.

To assess the robustness and variability in the results 
of the developed models, the entire pipeline were boot-
strapped, that is, it was run 10 times with different random 
training-test set splits. Finally, the mean and the SD or the 
minimum and maximum reached of the AUROC across 
the 10 training-test splits were calculated for each multi-
variable model and each single host biomarker.

Software
All statistical analyses and model development were 
performed using the R programming language (V.4.1.2). 
Specifically, the mice package was used for data 

imputation, while the pre and stats packages were used 
for RuleFit and logistic regression model development, 
respectively.

RESULTS
Study population
In total, 1915 patients with AFI were included in the study 
(Brazil: n=500; Gabon: n=415; Malawi: n=1000). Just 
under half (862/1915, 45%) of participants at each study 
site were male. Children aged <5 years comprised 45/500 
(9%), 182/415 (43.9%) and 367/1000 (36.7%) partic-
ipants in Brazil, Gabon and Malawi, respectively; the 
median (range) age was 3 (2–4) years (table 2). Detailed 
baseline characteristics of patients and analyses of differ-
ences will be described in a separate manuscript (Alabi et 
al in preparation).

Bacterial and non-bacterial outcomes by classification groups
Using the electronic classification grouping, 15.1% 
(290/1915) of cases were bacterial infections, 20.2% 
(387/1915) were non-bacterial infections and 64.5% 
(1238/1915) had an undetermined cause of fever 
(figure 1). Under the strict classification grouping, 24.3% 
(366/1509), 66.9% (1010/1509) and 9.0% (133/1509) 
were classified as bacterial, non-bacterial and undeter-
mined infections, respectively, while using the loose classi-
fication grouping 25.7% (491/1915), 67.3% (1286/1915) 
and 7.0% (133/1915) were classified as bacterial, non-
bacterial and undetermined infections, respectively 
(figure 1). Subjects with undetermined causes of fever/
infections were excluded from the following univariate 
and multivariable analyses.

Exclusion of biomarkers with too many missing or saturated 
values
The biomarkers C4b, HNL and PCT had more than 
50% missing values and were therefore excluded. 
The high number of missing values is due to the fact 
that biomarkers were analysed in groups based on the 
required dilution using the Luminex platform. For some 
biomarkers, the dilution was not optimal and it was only 
possible to remeasure biomarkers with a different dilu-
tion a limited number of times. IFN-gamma and sTREM-1 
were excluded due to more than 95% of values satu-
rated to the minimum/maximum level detectable by the 
measurement instrument. All the biomarkers retained 
in the analysis had less than 12% missing values (online 
supplemental table 3).

Identification of relevant subgroups for analyses
According to the Kruskal-Wallis analysis on the ‘electronic 
group’, the variables ‘country’, ‘malaria status’ and ‘age’ 
showed statistically significant differences in the distri-
butions of many host biomarkers (p≤0.001 for strong 
differences, 0.001≤p<0.01 for high differences; Online 
supplemental table 4). The variables ‘sex’, ‘comorbid-
ities’, ‘history of antibiotic use’ showed no (p>0.05) or 
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slight (p≤0.05) differences in all the host biomarkers. 
The effects of ‘chikungunya status’ and ‘fever above 38°C’ 
were generally significant (p≤0.01), but the sample sizes 
for these groups were either too small or exhibited an 
imbalance. Additionally, while we conducted subgroup 
analyses by clinical syndromes (ie, cough, diarrhoea or 
vomiting, dysuria or urinary urgency, headache, sore 
throat or swallow pain, rash), the resulting data sets 
were similarly limited in size, restricting our ability to 
make robust interpretations from these analyses. The 
primary focus remained centred on populations grouped 
by study country and malaria status variables—both of 
which showed big statistical differences with the value of 
the biomarkers in the ‘strict’ and ‘loose’ groups (online 
supplemental tables 5 and 6)—other significant covari-
ates were also included in the multivariable analysis. This 
inclusion was due to their influence and factors like the 
study country were considered as variables in the overall 
scenario.

Individual host-biomarker performance: univariate analysis
The performance of 18 host biomarkers was consistent 
across the three patient classification groups in each 
of the settings (table  3 and online supplemental tables 
7–9). WBC and neutrophil counts were the most effective 
biomarkers for differentiating bacterial and non-bacterial 
infections. For the malaria-negative population, the mean 
(95% CI) of AUROC for WBCs was between 0.60 (0.48 to 
0.72) and 0.83 (0.77 to 0.88) and for neutrophils, it was 
between 0.67 (0.57 to 0.77) and 0.80 (0.74 to .86) across 
the three countries and the three groups (‘electronic’, 
‘strict’, ‘loose’). Neutrophil and WBC counts showed the 
highest AUROCs in the Brazilian population, between 
0.80 (0.74 to 0.86) and 0.83 (0.77 to 0.88), respectively. All 
protein biomarkers showed relatively poor performances 
(<0.7 in most cases, table 4) in all three settings. Galac-
tin-9, CRP, IP-10 and NGAL were the best-performing 
protein biomarkers across the three settings and criteria. 
Protein biomarkers showed better performances in 

Table 2  Baseline characteristics of patients

Brazil Gabon Malawi All

0–5 years (median, IQR, n) 3, (2–4), 45 3, (2–5),182 3, (2–4), 367 3, (2–4), 594

5–15 years (median, IQR, n) 11, (8–14), 85 9, (7–12), 214 9, (7–12), 276 9, (7–12), 575

>15 years (median, IQR, n) 34, (24-45), 370 16, (16–16.5), 19 28, (21-36), 357 30, (21-42), 746

Male (%, n) 49.6, 248 45.1, 187 42.7, 427 45.0, 862

Temperature, °C (median, IQR, n) 37.7, (36.7–38.4), 500 36.8, (36.4–37.4), 415 38.1, (37.7–38.8), 999 37.8, (37.3–38.5), 1914

WBC count, 109 /L (median, IQR, n) 7.28, (5.47–10.39), 494 7.7, (5.7–10), 411 6.7, (5.1–9.3), 985 7.1, (5.3–9.8), 1890

Neutrophil count, 109 /L (median, 
IQR, n)

4.97, (3.63–7.4), 494 2.77, (1.96–3.9), 408 4.3, (3–6.18), 906 4.1, (2.8–6), 1812

RBC count, 109 /L (median, IQR, n) 40.1, (36.5–43.2), 494 33.2, (29.4–35.8), 412 36.2, (33.2–39.5), 984 36.3, (33–40.2), 1892

Lymphocyte count, 109 /L (median, 
IQR, n)

1.15, (0.7–1.99), 493 2.73, (1.8–4.16), 411 1.5, (1–2.2), 982 1.63, (1–2.6), 1883

CRP NycoCard*—mg/L (median, 
IQR, n)

70.5, (35–98.75), 498 28, (5–73), 415 47, (12–106.5), 987 49, (13–98), 1900

Malaria-positive by RDT on-site (% 
all, n)

0.2, 1 56.4, 234 45.9, 458 36.2,693

Malaria-positive by qPCR or 
microscopy (% all, n)

- - 50.5, 505 -

HIV-positive by RDT (% all, n) 1.4, 7 1.2, 5 4.2, 42 2.8,54

History of antibiotic-use pre-
presentation (% all, n)

8.8, 44 2.41, 10 7.2, 70 6.5,124

History of antipyretic-use pre-
presentation (% all, n)

83.2, 416 79.76, 331 55.1, 551 62.2,1298

Cough (%, n) 35.8, 179 30.1, 125 48.2, 482 41, 786

Diarrhoea or vomiting (%, n) 31.8, 159 28.9, 120 27.5, 275 28.9, 554

Dysuria or urinary urgency (%, n) 0.9, 45 5.12, 21 7.6, 76 7.4, 142

Headache (%, n) 76.4, 382 46.5, 193 71.1, 711 67.2, 1286

Sore throat or swallow pain (%, n) 39, 195 8.92, 37 15.8, 158 20, 390

Rash (%, n) 24.4, 122 4.1, 17 2.5, 25 8.6, 164

*NycoCard was found to be equivalent to reference testing in the relevant range (online supplemental figure 1).
-, data not available; CRP, C-reactive protein; qPCR, quantitative PCR; RBC, red blood cell; RDT, rapid diagnostic test; WBC, white 
blood cell.
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Malawi and Gabon, as in Brazil most protein biomarkers 
showed performances of<0.6. When the biomarker results 
were stratified by age, the AUROCs were slightly higher 
for children (≤15 years) compared with those seen for 
adults in the malaria-negative population (online supple-
mental tables 10–15). Among the malaria-positive popu-
lation, WBC, lymphocyte and neutrophil counts were the 
best-performing biomarkers in both Gabon and Malawi 
(in most cases between 0.6 and 0.7).

Combinations of host biomarkers and additional covariates: 
multivariable analysis
The best-performing biomarkers in the univariate anal-
ysis were compared with the best performances from 
the multivariable analyses with several feature-selected 
biomarkers and covariates (table  4 and online supple-
mental tables 16–21). In most cases, the best combination 
of biomarkers showed higher AUROCs than the top-
performing individual biomarkers, with a low/moderate 
‘gain’ (range 1–13%). The best-performing AUROCs 
were very similar, irrespective of the multivariable 
model used, especially for the ‘strict’ and ‘loose’ groups 
(difference in AUROC range 0.02–0.03 for Malawi and 
Brazil). Biomarkers identified as top performing by the 

multivariable analyses differed depending on the model 
used. While SW and RFA selected three to five biomarkers 
or combinations, RuleFit selected more biomarkers (10 
variables on average) to be part of the signature. The rela-
tively low increase in AUROC when comparing the top-
performing single biomarker with multivariable models 
indicates that biomarkers in addition to the single best-
performing biomarker do not make a major contribution.

DISCUSSION
We present the most extensive and diverse host biomarker 
evaluation study to differentiate bacterial from non-
bacterial infections in LMICs. The study aimed to iden-
tify if next-generation host biomarkers for distinguishing 
bacterial from non-bacterial cases of AFI which could 
replace existing biomarkers such as CRP, PCT and WBC/
neutrophil assessments. The data show that none of the 
promising host-biomarkers exhibited high AUROCs 
in our non-severe AFI population in either low malaria 
prevalence (Brazil) or high malaria prevalence (Gabon, 
Malawi) settings. Haematology biomarkers and CRP 
were included as a baseline to identify better-performing 

Figure 1  Classification criteria to assign bacterial versus non-bacterial infection categories for the analysis. The flows in 
different colours (turquoise=bacteria, purple=non-bacterial, red=undetermined) represent the proportion of patients that were 
assigned into the respective group (bacteria/non-bacteria/undetermined) after each classification step. Group 1 representing 
only patients assigned using laboratory data; group 2 representing patients with a unanimous decision after review by the 
clinical panel; group 3 after clinical panel review and group 3 including all patients, even if only two panel members agreed on 
the probable cause.
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Table 3  Univariate analysis of 18 individual biomarkers‡ among malaria-negative patients for all three countries (A–C)

(A) Brazil
AUROC* (CI), N

Electronic Strict Loose

Haematological biomarkers

 � Lymphocyte count 0.67 (0.59 to 0.74), 257 0.66 (0.59 to 0.72), 408 0.66 (0.6 to 0.72), 442

 � Neutrophil count 0.77 (0.7 to 0.84), 257 0.8 (0.74 to 0.86), 408 0.79 (0.73 to 0.84), 442

 � RBC count 0.61 (0.52 to 0.69), 258 0.58 (0.51 to 0.65), 408 0.58 (0.51 to 0.64), 442

 � WBC count 0.81 (0.75 to 0.87), 257 0.83 (0.77 to 0.88), 408 0.82 (0.77 to 0.87), 442

Protein biomarkers

 � AGP 0.59 (0.51 to 0.68), 252 0.54 (0.47 to 0.61), 402 0.52 (0.46 to 0.59), 434

 � Chitinase 3-like 1 0.58 (0.5 to 0.66), 246 0.54 (0.47 to 0.6), 394 0.55 (0.49 to 0.61), 424

 � CRP† 0.61 (0.52 to 0.69), 259 0.61 (0.54 to 0.68), 412 0.62 (0.55 to 0.68), 446

 � IP-10/IP-10/CRG-2 0.6 (0.52 to 0.68), 252 0.53 (0.46 to 0.59), 402 0.53 (0.47 to 0.59), 434

 � Galectin-9 0.63 (0.55 to 0.71), 252 0.56 (0.49 to 0.63), 401 0.57 (0.5 to 0.63), 433

 � hCC2 0.51 (0.43 to 0.6), 244 0.51 (0.44 to 0.58), 392 0.52 (0.46 to 0.59), 424

 � HBP‡ 0.67 (0.52 to 0.81), 113 0.68 (0.55 to 0.8), 144 0.64 (0.51 to 0.76), 151

 � HPTGN 0.48 (0.4 to 0.57), 248 0.51 (0.44 to 0.58), 398 0.51 (0.45 to 0.58), 430

 � IL-4 0.58 (0.5 to 0.65), 249 0.53 (0.47 to 0.59), 398 0.54 (0.48 to 0.59), 429

 � IL-6 0.49 (0.43 to 0.54), 247 0.49 (0.44 to 0.54), 395 0.48 (0.43 to 0.52), 426

 � LBP 0.58 (0.5 to 0.66), 248 0.54 (0.48 to 0.61), 397 0.52 (0.46 to 0.58), 429

 � Lipocalin-2/NGAL 0.49 (0.41 to 0.57), 249 0.51 (0.44 to 0.57), 396 0.51 (0.44 to 0.57), 428

 � sPLA/Lp-PLA2 0.54 (0.46 to 0.62), 252 0.53 (0.46 to 0.59), 402 0.52 (0.45 to 0.58), 434

 � TRAIL 0.56 (0.49 to 0.64), 252 0.53 (0.47 to 0.59), 402 0.53 (0.48 to 0.59), 434

(B) Gabon
AUROC** (CI), N

Electronic Strict Loose

Haematological biomarkers

 � Lymphocyte count 0.58 (0.45 to 0.71), 81 0.52 (0.4 to 0.63), 167 0.55 (0.45 to 0.65), 222

 � Neutrophil count 0.78 (0.66 to 0.89), 80 0.72 (0.62 to 0.83), 165 0.67 (0.57 to 0.77), 219

 � RBC count 0.55 (0.41 to 0.68), 81 0.52 (0.41 to 0.63), 167 0.53 (0.43 to 0.63), 222

 � WBC count 0.67 (0.54 to 0.79), 81 0.6 (0.48 to 0.72), 167 0.61 (0.5 to 0.71), 222

Protein biomarkers

 � AGP 0.77 (0.65 to 0.9), 80 0.7 (0.59 to 0.82), 163 0.65 (0.55 to 0.75), 220

 � Chitinase 3-like 1 0.6 (0.46 to 0.74), 79 0.6 (0.48 to 0.72), 162 0.62 (0.52 to 0.72), 217

 � CRP† 0.71 (0.59 to 0.82), 81 0.65 (0.55 to 0.75), 167 0.63 (0.53 to 0.72), 224

 � IP-10/IP-10/CRG-2 0.6 (0.48 to 0.73), 80 0.51 (0.4 to 0.62), 164 0.52 (0.43 to 0.62), 221

 � Galectin-9 0.7 (0.58 to 0.83), 80 0.6 (0.48 to 0.71), 163 0.54 (0.43 to 0.64), 219

 � hCC2 0.55 (0.41 to 0.69), 77 0.52 (0.4 to 0.64), 159 0.51 (0.41 to 0.61), 216

 � HBP‡

 � HPTGN 0.64 (0.5 to 0.78), 77 0.62 (0.51 to 0.74), 159 0.55 (0.45 to 0.66), 214

 � IL-4 0.46 (0.4 to 0.52), 79 0.49 (0.45 to 0.53), 163 0.51 (0.47 to 0.55), 220

 � IL-6 0.51 (0.47 to 0.55), 80 0.51 (0.48 to 0.55), 164 0.51 (0.47 to 0.55), 221

 � LBP 0.69 (0.56 to 0.83), 78 0.67 (0.55 to 0.78), 160 0.6 (0.5 to 0.71), 217

 � Lipocalin-2/NGAL 0.67 (0.54 to 0.8), 79 0.6 (0.49 to 0.72), 163 0.58 (0.48 to 0.68), 219

 � sPLA/Lp-PLA2 0.58 (0.44 to 0.71), 80 0.54 (0.43 to 0.65), 164 0.58 (0.48 to 0.68), 221

 � TRAIL 0.5 (0.5 to 0.5), 74 0.5 (0.49 to 0.5), 156 0.49 (0.48 to 0.5), 212

Continued
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markers; however, they remain those with the highest 
AUROC values (approximately 0.60–0.70 AUROC) in our 
population.

Overall, the performance of all markers was under-
whelming, yet not surprising. It aligns with previous 
data where a marked reduction in performance was 
observed when shifting the population from inpatients to 
outpatients.16–18 Previously, it was hypothesised that the 
decrease in performance in host biomarkers between 
HIC and LMIC settings or even between Africa and Asia, 
was due to the untreated comorbidities (eg, diabetes, 
malaria, neglected tropical diseases) which contribute 
to inflammation and the non-specific triggering of host 
biomarkers, unrelated to the current acute presenta-
tion.18 19 In our data the performance was indeed poorer 

in malaria-positive patients (AUROC<0.6); however, even 
in the malaria-negative population, biomarkers showed 
low performances (∼0.6–0.7) in our cohort. Similarly, 
sex and arboviral status appeared to have no major effect 
on biomarker performance. Our data notably indicated 
that combining biomarkers can enhance performance. 
However, this improvement was not consistently observed. 
When combining several biomarkers and additional 
covariates, the ‘gain’ in AUROC values was low/moderate 
(range 1–13%) compared with the top-performing indi-
vidual biomarkers. From a diagnostic development 
perspective, a low gain in performance would not justify 
the additional complexity and cost of developing a simple 
multiplex test.

(C) Malawi
AUROC** (CI), N

Electronic Strict Loose

Haematological biomarkers

 � Lymphocyte count 0.56 (0.47 to 0.66), 154 0.51 (0.45 to 0.58), 303 0.52 (0.47 to 0.58), 461

 � Neutrophil count 0.67 (0.58 to 0.77), 143 0.73 (0.67 to 0.79), 273 0.7 (0.65 to 0.76), 414

 � RBC count 0.46 (0.36 to 0.56), 155 0.53 (0.46 to 0.59), 305 0.56 (0.5 to 0.61), 463

 � WBC count 0.69 (0.6 to 0.78), 155 0.72 (0.66 to 0.78), 304 0.68 (0.63 to 0.73), 461

Protein biomarkers

 � AGP 0.56 (0.46 to 0.66), 158 0.54 (0.48 to 0.6), 309 0.54 (0.49 to 0.59), 466

 � Chitinase 3-like 1 0.49 (0.39 to 0.59), 155 0.5 (0.43 to 0.56), 304 0.5 (0.44 to 0.55), 462

 � CRP† 0.55 (0.45 to 0.65), 156 0.6 (0.54 to 0.67), 305 0.58 (0.53 to 0.63), 462

 � IP-10/IP-10/CRG-2 0.66 (0.56 to 0.75), 158 0.6 (0.53 to 0.66), 309 0.61 (0.56 to 0.66), 466

 � Galectin-9 0.71 (0.62 to 0.8), 158 0.61 (0.55 to 0.67), 309 0.63 (0.57 to 0.68), 466

 � hCC2 0.59 (0.49 to 0.69), 158 0.55 (0.49 to 0.62), 309 0.55 (0.5 to 0.6), 466

 � HBP‡ 0.53 (0.39 to 0.68), 63 0.55 (0.44 to 0.66), 106 0.52 (0.41 to 0.63), 124

 � HPTGN 0.54 (0.45 to 0.64), 157 0.51 (0.45 to 0.58), 307 0.51 (0.46 to 0.57), 464

 � IL-4 0.48 (0.4 to 0.57), 157 0.48 (0.42 to 0.53), 306 0.47 (0.42 to 0.51), 463

 � IL-6 0.56 (0.47 to 0.65), 158 0.61 (0.55 to 0.67), 307 0.59 (0.54 to 0.64), 465

 � LBP 0.52 (0.42 to 0.61), 157 0.54 (0.47 to 0.61), 267 0.53 (0.47 to 0.59), 394

 � Lipocalin-2/NGAL 0.56 (0.46 to 0.66), 156 0.65 (0.59 to 0.72), 265 0.61 (0.56 to 0.67), 392

 � sPLA/Lp-PLA2 0.58 (0.47 to 0.68), 158 0.55 (0.49 to 0.61), 308 0.56 (0.51 to 0.61), 466

 � TRAIL 0.61 (0.51 to 0.71), 157 0.62 (0.56 to 0.68), 306 0.62 (0.57 to 0.67), 463

Common biomarkers such as CRP and haematological biomarkers were included for reference. In this context, we defined performance as 
follows: dark blue (AUROC≥0.7), light blue (AUROC>0.65 and <0.7), orange (AUROC 0.6–0.65) and red (AUROC<0.6)
*AUROC has a value between 0 and 1, where 1 corresponds to an effect classifier, 0.5–1 that assigns classes randomly.
†CRP was measured with a NycoCard device.
‡Freeze-thaw experiments to evaluate the stability of the biomarkers after five cycles (referred to as ‘treated’) were performed with Luminex 
9-plexes and 2-plexes. Three samples each were freeze-thawed up to six times and compared with samples after the first thawing (referred to 
as ‘untreated’; biomarkers were considered stable with 80–120% recovery). Samples were analysed in triplicate and showed good stability up 
to five freeze-thaw cycles for all analytes showing acceptable results, except for the C2 and C4b biomarkers (C2: 2/3 (66.7%) samples were 
stable; C4b: two samples failed the sixth freeze-thaw cycle). As a result, these biomarkers were excluded as they would never be suitable as 
the basis of a diagnostic test.
§HBP was evaluated in a small group of patients in Malawi and Brazil; however, HBP did not show promise and was not evaluated further.
AGP, A-1-acid glycoprotein; AUROC, area under the receiver operating characteristic; CRP, C-reactive protein; HBP, heparin-binding protein; 
IL-4, interleukin-4; IP-10, gamma-induced protein 10; LBP, lipopolysaccharide binding protein; NGAL, neutrophil gelatinase-associated 
lipocalin; RBC, red blood cell; TRAIL, TNF-related apoptosis-inducing ligand; WBC, white blood cell.

Table 3  Continued
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Adding to the challenges of host biomarker studies is 
the lack of consistent reference standards and that most 
studies have focused their analyses solely on the subpopu-
lation of patients with a microbiologically confirmed diag-
nosis. This approach ignores the largest group (>70%) of 
patients and the intended-use population of any future 
test.20 The group with laboratory-confirmed diagnosis 
will decrease further in the non-severe AFI population; 
presenting at the primary care level. Going forward more 
clarity will likely follow as a recent host-biomarker test 
(BVtest, MeMed, Israel) was approved by the Food and 
Drug Administration (FDA) and subsequent guidance will 
prescribe more clearly how studies have to be designed 
to standardise the classification of ‘bacterial’ versus ‘non-
bacterial’ evaluated to guide prescribing for bacterial or 
non-bacterial infections.9 21 Our protocol is aligned with 
the FDA-approved classification hence we are confident 
our methodology is robust.

While our study aimed to mitigate the challenges 
described, it still had several limitations. The study did not 
include a control group, so no baseline information was 
available for biomarker performance or asymptomatic 

carrier populations. The enrolment period in Brazil and 
Gabon lasted for less than 1 year and given the heteroge-
neity of causes of AFI across time, the performance of the 
biomarkers may not be generalisable to different times of 
the year and geographical settings, particularly in Asia. The 
study used a two-step process to classify outcomes and the 
clinical classification based on recorded clinical informa-
tion may have introduced subjectivity. Notably, clinicians 
had access to the haematology biomarker results (WBCs, 
neutrophils) during outcome classification which might 
have introduced a bias in favour of these biomarkers. 
However, comparing AUROCs between all classification 
groups (E, L, S) suggests this potential bias had no major 
impact as the results are similar across groups. There 
were some heterogeneities in the inclusion criteria across 
the various study sites, including age groups and fever 
criteria. In Brazil and Gabon, the inclusion criterion was 
a history of fever in the past 7 days, while it was fever at 
presentation in Malawi. Studies have found that acute 
fever at presentation has implications for the interpre-
tation of host biomarkers;22 however, our subanalysis by 
acute fever showed no differences, so we do not consider 

Table 4  Multivariable analysis of biomarkers among malaria-negative patients, including the gain/loss of performance when 
comparing multivariable analysis and single-host biomarkers comprising both haematological and protein host biomarkers

Classification 
group

Best multivariable model/models: 
mean (min–max) AUROC

Best host biomarker: mean (min–
max) AUROC

Multivariable AUROC gain/loss 
(%) ‡ multivariable and single 
host biomarkers ratio

Overall (Brazil + Gabon + Malawi)†

 � L SW/RFA/RF:0.75 (0.69–0.81) WBC count: 0.7 (0.64–0.76) +7

 � S SW:0.83 (0.75–0.91) WBC count: 0.78 (0.72–0.84) +6

 � E SW/RFA:0.83 (0.77–0.89) WBC count: 0.77 (0.69–0.85) +8

Brazil

 � L SW: 0.82 (0.70–0.94) WBC count: 0.8 (0.68–0.92) +2.5

 � S RFA: 0.82 (0.70–0.94) WBC count: 0.8 (0.68–0.92) +2.5

 � E SW: 0.85 (0.73–0.97) WBC count: 0.83 (0.69–0.97) +2

Gabon*

 � L SW/RFA: 0.7 (0.46–0.94) WBC count: 0.7 (0.64–0.76)

 � S SW/RFA: 0.76 (0.52–0.96) WBC count: 0.78 (0.72–0.84) −3

 � E RFA: 0.77 (0.63–0.91) WBC count: 0.77 (0.69–0.85)

Malawi

 � L SW/RFA: 0.74 (0.62–0.86) neutrophil count: 0.72 (0.66–0.78) +3

 � S SW: 0.73 (0.61–0.85) neutrophil count: 0.72 (0.58–0.86) + 1

 � E RFA: 0.72 (0.60–0.84) WBC count: 0.7 (0.56, 0.84) + 2

Dark Blue (gain, ie, the multivariable models show better performances than univariate models); red (loss, ie, the univariate models show 
better performances than multivariable models).
*Multivariable performances for Gabon were computed using as a predictor model the model trained in the ‘Overall’ scenario (all participants 
from the three analysed countries) then evaluated using Gabon data only. Indeed, the sample size of Gabon data was not sufficient to allow 
the development of a reliable model specific to this country.
†In the ‘Overall’ scenario, the model was developed using the data of all countries and the variable indicating the country was used as a 
covariate in the model.
‡Performance comparison was computed as: ((multivariable AUROC − univariate AUROC) / univariate AUROC) × 100.
AUROC, area under the receiver operating characteristic; E, electronic classification group; L, loose classification group; RF, RuleFit; RFA, 
logistic recursive feature addition; S, strict classification group; SW, stepwise logistic regression; WBC, white blood cell.
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that these different inclusion criteria impacted interpre-
tation. Despite best efforts to standardise procedures, 
there was a level of adaptability required in the choice of 
testing methods by the clinical teams in each country, for 
arbovirus and respiratory pathogen detection. Further, 
the choice to follow the TPP and focus on non-severe 
patients in the recruitment was based on the need’s defi-
nition by the WHO and others, while this still holds as a 
major priority, in hindsight this focus did not allow us to 
stratify by severity (eg, Sequential Organ Failure Assess-
ment (SOFA) score).

Overall, the results of this diverse study highlight 
the difficulties in identifying single-host biomarkers or 
simple-host biomarker combinations that can help solve 
the problem of undifferentiated prescribing in primary 
healthcare, particularly to be used across diverse global 
settings. On the eighth birthday of the original TPP 
for a diagnostic assay to distinguish bacterial and non-
bacterial infections in resource-limited settings, a more 
recent consultation confirmed that the need for such 
an assay remains and is in fact increasingly urgent.6 23 
Yet again, the consultation concluded primary health-
care clinics and their equivalents must have the ability to 
perform tests other than just malaria RDTs.23 The lack 
of diagnostics infrastructure at the lower levels of health 
systems is well documented and requires urgent improve-
ment to support medical staff in their decision-making. 
While no novel host biomarker assay meets these needs, 
evidence for existing biomarkers, for example, CRP, and 
various haematology biomarkers, should be used to drive 
such improvements, although using slightly different 
approaches and cut-offs across settings. In addition to 
using existing tools, increased investment into lower-
level health infrastructures is critical and the first step 
to improved care. Recent studies have shown that even 
simple-host biomarkers, such as CRP, can have a major 
impact on how clinical staff use antibiotics.24–26 The 
current study confirms that the existing biomarkers are 
imperfect and hence should only be used as guidance, 
in conjunction with expanded clinical algorithms.27 28 
Such guidelines, alongside adopted policies, strength-
ened infrastructures and accessible haematology/bio-
chemistry data could enable healthcare workers to use 
simple tools to gain additional data points to help form 
a more evidence-based diagnosis that has to be guided 
by the local epidemiology. Optimising existing haema-
tology or biochemistry tools and their maintenance 
requirements to meet the needs of low-resourced settings 
could be one step towards more expanded use of these 
well-known markers. In conclusion, our study reinforces 
the continued need for innovation in the host biomarker 
space and highlights the importance of targeted evalua-
tions of such innovations, in diverse intended-use settings, 
to fully understand their true value.
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