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Abstract: Sepsis is one of the leading causes of mortality in hospital settings, and early
diagnosis is a crucial challenge to improve clinical outcomes. Artificial intelligence (AI) is
emerging as a valuable resource to address this challenge, with numerous investigations
exploring its application to predict and diagnose sepsis early, as well as personalizing its
treatment. Machine learning (ML) models are able to use clinical data collected from hospital
Electronic Health Records or continuous monitoring to predict patients at risk of sepsis hours
before the onset of symptoms. Background/Objectives: Over the past few decades, ML
and other AI tools have been explored extensively in sepsis, with models developed for the
early detection, diagnosis, prognosis, and even real-time management of treatment strategies.
Methods: This review was conducted according to the SPIDER (Sample, Phenomenon of
Interest, Design, Evaluation, Research Type) framework to define the study methodology. A
critical overview of each paper was conducted by three different reviewers, selecting those
that provided original and comprehensive data relevant to the specific topic of the review and
contributed significantly to the conceptual or practical framework discussed, without dwelling
on technical aspects of the models used. Results: A total of 194 articles were found; 28 were
selected. Articles were categorized and analyzed based on their focus—early prediction,
diagnosis, mortality or improvement in the treatment of sepsis. The scientific literature
presents mixed outcomes; while some studies demonstrate improvements in mortality rates
and clinical management, others highlight challenges, such as a high incidence of false
positives and the lack of external validation. This review is designed for clinicians and
healthcare professionals, and aims to provide an overview of the application of AI in sepsis
management, reviewing the main studies and methodologies used to assess its effectiveness,
limitations, and future potential.

Keywords: sepsis management; artificial intelligence; machine learning; early warning
systems; clinical application

1. Introduction
Sepsis is a life-threatening condition caused by the body’s dysregulated immune

response to infection, which may lead to organ dysfunction, septic shock, and death. As
a medical emergency, sepsis requires rapid diagnosis and timely intervention to prevent
severe complications and reduce mortality [1]. It remains a significant cause of morbidity
and mortality globally, and in recent decades, predicting which patients are at risk of sepsis
has become a research priority. A promising field involves using artificial intelligence
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(AI)-driven models. AI, broadly defined, is a branch of computer science focused on devel-
oping systems that can perform tasks requiring human-like intelligence, such as learning,
reasoning, and decision-making [2,3]. Machine learning (ML) is a subset of AI, capable
of “learning” from data and acquiring new knowledge and techniques across machine
learning models (MLMs). In healthcare, AI enables the analysis of large, complex datasets,
allowing us to recognize intricate patterns that may be missed by traditional methods [4].
This capability is especially valuable in sepsis management, where early prediction, diagno-
sis, and personalized treatment can significantly impact patient outcomes [5–7], as shown
in Figure 1.
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This review is designed for clinicians and healthcare professionals and aims to provide
an overview of the application of AI in sepsis management, reviewing the main studies
and methodologies used to assess its effectiveness, limitations, and future potential. In the
end, we will also discuss some commercially available models.

2. Materials and Methods
This review was conducted according to the SPIDER (Sample, Phenomenon of Interest,

Design, Evaluation, Research Type) framework methodology. A large-scale search was
performed across PubMed, MeSH, Medline, Embase and Scopus using keywords “sepsis”
and “Artificial Intelligence”, or “sepsis” and “machine learning”, in a timeframe ranging
from 1 January 2019 to 10 December 2024, in order to obtain an updated overview of the
current state of the art of the topic focusing on prediction, diagnosis and treatment. The
queries chosen by the authors were: “(((“sepsis” [All Fields]) AND (“Artificial Intelligence”
[All Fields])) AND ((prediction) OR (diagnosis) OR (treatment)))”, “Full text, Clinical Study,
Clinical Trial, Multicenter Study, Observational Study, Pragmatic Clinical Trial, Randomized
Controlled Trial, from 2019–2024”; (sepsis) AND (machine learning), “Full text, Clinical
Study, Clinical Trial, Multicenter Study, Observational Study, Pragmatic Clinical Trial,
Randomized Controlled Trial, from 2019–2024”; (sepsis) AND (Artificial Intelligence), and
“Full text, Clinical Study, Clinical Trial, Multicenter Study, Observational Study, Pragmatic
Clinical Trial, Randomized Controlled Trial, from 2019–2024”.

A total of 194 articles were found. We included papers that discussed the use of AI in
sepsis management regardless of setting or study population. We excluded non-original
articles, reviews and papers with no full text available. We focused on those articles that
provide clinical insights and application, even without dwelling on the technical aspects of
the models used. Some papers were found to be related articles.
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A critical overview of each paper was conducted by 3 different reviewers, selecting
those that provided original and comprehensive data relevant to the specific topic of the
review and contributed significantly to the conceptual or practical framework discussed.
For each study design, ML models and methods, analysis, intent, selling points and
limitations were explored. Subsequently, the articles were categorized and analyzed based
on their focus: early prediction, diagnosis, mortality or improvement in the treatment
of sepsis.

At the end, a total of 28 papers were selected. The results are summarized in Table 1.

2.1. Early Prediction of Sepsis

One of the most promising applications of AI in the management of sepsis is the ability
to predict the likelihood of onset of the syndrome hours in advance of obvious clinical
symptoms. MLMs can in fact analyze clinical data extracted from electronic health records
(EHR) or continuous monitoring, such as vital signs, laboratory parameters and medical
history of patients, to identify those at risk of developing sepsis. In order to demonstrate
their performance, MLMs are often compared to traditional sepsis scoring systems, like
Systemic Inflammatory Response System (SIRS) criteria, Sequential Organ Failure Score
(SOFA), quick SOFA (qSOFA), National Early Warning Score (NEWS) and Modified Early
Warning Score (MEWS).

In a study from 2019, Giannini et al. [8] developed a random forest-based ML algorithm
for the prediction of severe sepsis and septic shock. The model was trained on a dataset
of more than 160,000 patients, including 587 clinical variables, including vital signs and
laboratory data, to make predictions on patients not admitted to the Intensive Care Unit
(ICU). The results were encouraging, with a specificity of 98%, but sensitivity was relatively
low, at 26%. This indicates that although the algorithm was able to avoid false positives, it
had difficulty detecting all patients at real risk. In particular, the algorithm demonstrated
greater accuracy in predicting cases of septic shock than less severe sepsis, reflecting a
specific potential for identifying severe cases. Despite the specificity of the algorithm, its
clinical impact was limited. During an eight-month test period in two hospitals, both in
“silent” mode and with active alerting, only a modest increase in the use of lactate tests and
fluid administration was observed, but no significant improvements in mortality, hospital
length of stay or ICU transfers were recorded. This emphasizes that although AI can detect
sepsis early, translating these predictions into tangible clinical improvements requires
further research and optimization.

Another ML algorithm [9] was developed to predict sepsis up to 48 h before onset,
using six vital signs (heart rate, respiratory rate, temperature, systolic and diastolic blood
pressure, oxygen saturation). Based on retrospective data from two different datasets, the
algorithm was compared with traditional scoring systems such as SIRS, SOFA, MEWS
and qSOFA. The algorithm showed a higher Area Under the Curve (AUROC) (0.88 at
onset, 0.84 and 0.83 at 24 and 48 h before, respectively) than traditional scores (SOFA,
0.72; SIRS, 0.66). The system stands out for its ability to identify patients at risk of sepsis
early on without requiring complex data, using only variables frequently measured in
hospital settings. In addition, the model also demonstrated robustness in cross-population
validation between the two datasets. This advanced prediction offers opportunities for
intensive monitoring and early intervention, reducing the risk of progression to septic
shock. No less importantly, the exclusive use of essential data makes the algorithm suitable
for diverse settings, including non-ICU environments.

An article from 2020 [10] presents a study on the early prediction of sepsis using
an Explained Artificial Intelligence Model (EASP). The study uses EHR data from ICU
patients, collected during the PhysioNet/Computing in Cardiology Challenge 2019. The
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main objective was to develop a model that can predict sepsis in real time and explain the
impacts of the variables used in the prediction. EASP analyzes 168 features extracted on
an hourly basis, including raw data, time series, derived variables and empirical clinical
indicators. The model uses XGBoost with Bayesian optimization. The model showed
promising performance, with an area under the curve (AUC) of 0.85 and a sensitivity
of 90%, although specificity was lower (64%). Despite its overall good performance, the
results showed limitations, including the generation of false positives and inconsistent
performance across test sets from different hospitals.

Another study that focuses on using EHR data to develop a deep learning model
for early sepsis detection is the one by Lauritsen et al. [11]. Unlike traditional models
limited to specific clinical parameters or ICU settings, this model incorporates a wider
range of data, including raw sequential EHR events from multiple hospital departments.
The proposed model employs a combination of convolutional neural networks (CNNs) and
Long Short-Term Memory (LSTM) networks designed to extract and learn temporal and
sequential patterns from patient data without requiring intensive feature engineering. The
model predicts the onset of sepsis up to 24 h earlier, obtaining an AUROC of 0.856 at 3 h
before onset and 0.752 at 24 h. Clinical utility was evaluated by analyzing opportunities for
intervention, such as administering antibiotics or performing blood cultures. The results
reveal that the model can identify many cases of sepsis in which previous interventions
have not been initiated, facilitating earlier treatment and potentially reducing morbidity
and mortality.

A further relevant study is the one by Shashikumar et al. [12], who proposed DeepAISE
(Deep Artificial Intelligence Sepsis Expert), an advanced AI model for predicting the onset
of sepsis at one-hour intervals, up to 12 h before the clinical onset of symptoms, using a
recurrent neural network combined with a parametric Weibull–Cox risk model in terms of
survival. This system, designed for use in an ICU, analyzes 65 updated clinical variables
on an hourly basis, including vital signs and laboratory parameters, continuously extracted
from electronic medical records. It demonstrated high accuracy, achieving an AUC of
0.90 per prediction at 4 h and maintaining competitive performance up to 12 h at the Lowest
False Alarm rates (FARs) between 0.20 and 0.25. A distinctive aspect of DeepAISE is its
interpretability; the model not only predicts sepsis risk, but also identifies key risk factors in
real time for each patient, making the predictions more usable by clinicians than traditional
‘black box’ MLMs. In addition, the validation of the model was conducted on external
cohorts, thus demonstrating high generalizability across geographically and clinically
diverse populations. The article acknowledges some limitations and potential biases
related to the implementation of DeepAISE; the case–control approach often overestimates
the prevalence of sepsis compared to a sequential prediction design. This can lead to high
false alarm rates when used in real clinical settings. Also, the framework is affected by
missing data in clinical sets, which may reduce the sensitivity of the model in less frequent
monitoring settings than in ICUs.

In a multicenter prospective study [13], an ML algorithm using gradient-boosted trees
was applied to predict severe sepsis in real-world hospital settings across the United States.
The algorithm analyzed vital signs and demographic data from 17,758 patients who met
systemic inflammatory response syndrome (SIRS) criteria. Its implementation led to a
significant reduction in in-hospital mortality (39.5%), hospital length of stay (32.3%), and
30-day readmissions (22.7%). The study demonstrated the efficacy of a data-minimal
approach, with the algorithm relying on routinely available EHR data. The MLA outper-
formed traditional sepsis scoring systems (e.g., SIRS, SOFA), which are limited by poor
sensitivity and reliance on non-rapidly available laboratory data. It is worth noticing that
while other ML approaches have largely been evaluated retrospectively, this study provides
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robust prospective evidence of clinical benefits. The reduction in sepsis-related outcomes
suggests the algorithm can enhance early detection and decision-making, which are crucial
for timely antibiotic administration and fluid management.

Persson et al. [14] constructed a high-performance MLM for sepsis prediction called
NAVOY Sepsis by using convolutional neural networks. The used data came from the
EHRs of ICU patients of a single center, with a total of 20 variables aiming to predict sepsis
according to sepsis-3 criteria.

The objective of the authors is to develop a robust and widely applicable sepsis
prediction model for European ICUs, based on routinely collected clinical data.

A key strength of the study is its external validation of performance using hold-out
test data. The results were highly promising, with an AUROC of 0.90 and the ability to
predict sepsis up to 3 h before onset. The model outperformed existing sepsis early warning
scoring systems. However, limitations persist, similarly to other studies, such as the lack of
prospective randomized trials, the inability to exclude biases in the data (such as variations
in length of stay distribution), insufficient broad external validation (despite the use of
hold-out test data in this study), and the absence of information on the clinical or economic
impact of the model in real-world practice.

A study conducted by Pappada et al. [15] developed a Sepsis Risk Index (SRI) for
the early identification of sepsis in patients admitted to intensive care units. Using a
model based on artificial neural networks (ANN), the SRI combines real-time clinical data
extracted from EHRs with the prediction of changes in vital parameters. The model showed
a sensitivity of 79.1% and a specificity of 73.3% for the diagnosis of sepsis, with an area
under the ROC curve of 0.82. For the diagnosis of septic shock, sensitivity increased to
83.8% and specificity remained unchanged.

A very recent study [16] describes the development and validation of the Sepsis Im-
munoScore, the first FDA-cleared artificial intelligence algorithm for sepsis prediction. The
model was trained on data from 2366 hospitalized patients and validated on two cohorts,
internal (393 patients) and external (698 patients), collected from five US hospitals between
2017 and 2022. The primary objective was to predict sepsis within 24 h of hospital admis-
sion, using Sepsis-3 criteria. The model uses 22 clinical parameters, including vital signs,
laboratory tests and specific biomarkers such as procalcitonin (PCT) and C-reactive protein
(CRP). With a calibrated random forest algorithm and SHAP values for interpretability, the
system achieved an AUROC of 0.85 in the derivation set, 0.80 in the internal validation and
0.81 in the external validation. In addition, patients were stratified into four risk categories,
demonstrating significant correlations with sepsis severity and clinical outcomes.

2.2. Diagnosis of Sepsis

The main difference between the early prediction and diagnosis of sepsis lies in the
actual occurrence of sepsis in the patient being examined. Early prediction assesses the
risk of developing sepsis before clinical signs appear, though it is not definitive, with the
goal of adjusting medical attention and procedures accordingly. In contrast, diagnostic
MLMs use real-time clinical data to calculate scores, which can then be compared with
traditional scoring systems, such as Systemic Inflammatory Response System (SIRS) criteria,
Sequential Organ Failure Score (SOFA), quick SOFA (qSOFA), National Early Warning Score
(NEWS) and Modified Early Warning Score (MEWS), suggesting potential advantages in
certain contexts.

In a paper evaluating the role of AI in sepsis management [17], an ML algorithm
was developed using electronic medical record (EMR) data and biomarkers (procalcitonin,
interleukin-6 and C-reactive protein) to predict and stratify sepsis cases. The study included
1400 patients from two hospitals, using a random forest model trained on EMR parameters
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and non-routinely measured biomarkers. This approach achieved an AUROC of 0.83 for
the diagnosis of sepsis, demonstrating reliable diagnostic and prognostic performance. The
model produces a sepsis risk score that correlates with disease severity, predicting outcomes
such as length of hospital stay, 30-day mortality and hospital readmission rates. Patients
stratified into low-, medium- and high-risk categories showed significant differences in
these outcomes. In particular, patients with higher predicted scores had a median hospital
stay of 8.5 days versus the 3.2 days of low-risk patients and a 30-day mortality rate of 13.3%
vs. the 2.9% of the low-risk population, and this correlated with worse outcomes, such as
septic shock.

This algorithm emphasizes how combining biomarkers with EMR features significantly
outperformed the use of EMR data alone, enhancing both diagnostic and prognostic accuracy.

The article by Wang et al. [18] describes a supervised random forest MLM applied to
the early diagnosis of sepsis in ICU patients. The study used a dataset of 4449 patients with
infections, trained the data set by pre-procedure clinical variables, used a cross-validation
to evaluate the prediction accuracy of model, and, finally, tested it with the validation data
set with a 4:1 split for training and validation. Key variables used in the model included
neutrophils, D-dimer, eosinophils, albumin, and white blood cells. The model showed a
good discriminative power, with an AUROC of 0.91, a sensitivity of 87% and a specificity
of 89%. The study’s key advantage is its ability to diagnose sepsis after an infection has
already been confirmed. However, the authors emphasize the need for further external
validation to ensure its performance beyond the Chinese population. Additionally, they
suggest the inclusion of more variables for enhanced accuracy.

In this scenario, another study from Arrigue and Urrechaga [19] tested different
MLMs to diagnose sepsis in patients admitted to the ED with suspected infection, using
data from blood tests. Logistic Regression (LR) was used as a benchmark with MLMs
developed—naïve Bayes (NB), K-nearest neighbor (KNN), support vector machines (SVM),
random forest (RF), multi-layer perceptron (MLP) and extreme gradient boosting machine
(XGBOOST). MLMs used leukocytes Cell Population Data (CPD), white blood cells ratio,
positive cultures for bacteria, and serology or molecular tests for viruses. Sepsis was
diagnosed using a qSOFA score ≥2. MLP achieved the best results compared to other
models, in terms of performance, precision and calibration. The greatest strength of this
study lies in its prospective design and the use of clinical data collected promptly after
assessment, which incurs low costs and accelerates the decision-making process. This
aspect warrants further exploration, such as by comparing the model with other sepsis risk
and mortality stratification scores.

One of the most recent examples of a sepsis prediction tool is SepsisFinder, a casual
probabilistic network (CPN) model presented by Valik et al. [20], which mimics the reason-
ing of healthcare providers by using routine data coming from EHRs of non-ICU patients
to diagnose sepsis basing on Sepsis-3 criteria. SepsisFinder was compared with NEWS2,
and it was shown to obtain an earlier trigger for the identification of sepsis within 48 h,
with a higher AUROC of 0.950, at the cost of slightly lower precision. The model was also
compared through a gradient-boosting decision tree (GBDT) model with other MLMs, but
none of them performed better. The accuracy of the model is linked to earlier admission
periods and bloodstream infections, which led to a well-timed initiation of antibiotic treat-
ment. However, the experiment faces the same limitations as were previously mentioned:
a lack of external validation, limited generalizability, and the potential impact of missing or
inaccurate data in the EHRs.

A further article [21] evaluates the effectiveness of a machine learning-based sepsis
alert system (MLASA) in an emergency department (ED) by means of a cluster-randomized
study. The system analyzes real-time data from EHR to identify sepsis early. Patients in
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intervention groups received an MLASA alert displayed in real time, while those in control
groups were monitored by conventional methods (e.g., qSOFA or MEWS scores). The
implementation of the system increased the proportion of patients who received antibiotics
within 1 h (68.4% compared to 60.1% in the control group). Administration within 3 h was
also more frequent in the intervention group (94.5% versus 89.0%). However, the median
triage–antibiotic times (46 vs. 50 min) showed no significant differences. Therefore, ML
outperformed conventional methods in the diagnosis of sepsis, achieving an area under
the ROC curve of 0.93 compared to qSOFA (0.73), SIRS (0.84) and MEWS (0.86). This study
shows that MLASA improves the timely diagnosis and treatment of sepsis in critical care
settings, although the effect on overall response time remains marginal.

In a more specific field, Zheng et al. [22] combined ML and specific biosignatures, like
biomarkers and metabolomic characteristics, to develop an accurate diagnosis strategy
among septic patients. XGBoost combined with three feature selection methods, variance
threshold, maximal information coefficient (MIC), and relief, was used to select clinical and
metabolomic features that distinguished septic patients from controls. The model success-
fully detected 57 features with high accuracy (AUC = 0.94). White blood cell (WBC) count,
platelet count, and blood lactate were shown as key clinical features. The model also scored
an AUC of 0.80 on discrimination between Gram-positive and Gram-negative infections
(sensitivity, 86%; specificity, 48%). Top biomarkers included metabolites associated with
ubiquinone and D-arginine metabolism. Sepsis was associated with disrupted nitrogen
metabolism, mitochondrial dysfunction, and organ failure (e.g., liver, intestine, kidney),
and specific metabolic biomarkers (e.g., Coenzyme Q10, bile acids, glycerophospholipids)
highlighted key differences in host–pathogen interactions. ML demonstrated strong po-
tential for identifying pathogen-specific biomarkers, offering diagnostic capabilities that
surpass traditional methods and revealed systemic physiological disruptions (e.g., nitrogen
metabolism, mitochondrial damage) critical to sepsis progression and outcomes.

2.3. Sepsis Mortality Prediction

Predicting sepsis-related mortality is closely connected with sepsis’ prediction itself,
and so it is crucial for improving clinical outcomes. Recent advances underscore AI’s
potential to support early, personalized interventions in critical conditions, with evidence
suggesting that timely, data-driven models can improve patient outcomes significantly [23].
AI and MLMs, thanks to their ability to analyze large amounts of information in real
time, allow high-risk patients to be identified, enabling early and targeted interventions to
significantly reduce sepsis-related mortality.

Park et al. [24] conducted a comprehensive comparison between traditional logistic re-
gression and commonly used MLMs for predicting sepsis mortality, based on retrospective
data of hospitalized sepsis patients. They developed four MLMs to predict in-hospital mor-
tality: logistic regression with Least Absolute Shrinkage and Selection Operator (LASSO)
regularization, random forest (RF), gradient-boosted decision trees (XGBoost), and a deep
neural network (DNN). To evaluate model performance, they also used the Super Learner
(SL) model, which estimates and combines predictions from multiple models. The results
were significant; all four MLMs outperformed the reference logistic regression model,
though room for improvement remains. This opens possibilities for risk stratification and
proactive clinical interventions. The models also identified certain clinical variables associ-
ated with higher mortality. The authors acknowledged some study limitations but felt these
had minimal impact on the results due to the large sample size and robust standardization.
A potential bias noted by the authors was the variation in results across hospitals and
regions due to differences in sepsis care and outcomes.
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In accordance with the paper above, Rodriguez et al. [25] presented and compared the
applicability and the performances of four different data mining MLMs for the classification
and prediction of mortality in adult patients hospitalized for sepsis. In the first subset,
the model with the best performance was random forest, with an accuracy of 84% and
an AUC-ROC of 0.61. All models showed high survival prediction (89–92%) but poor
mortality prediction accuracy (28–30%). For the second subset, a better prediction of
death was observed mainly in the support vector machine (SVM) with ANOVA kernel
and Artificial Neural Network (ANN); both achieved an accuracy of about 70.7% and an
AUC-ROC = 0.69. Physiological variables like lactate, MAP (mean arterial pressure), and
Glasgow Coma Scale showed better predictive power than treatment-related variables.
When predicting sepsis mortality, models driven by physiological variables performed
better than those using clinical care variables. Overall, SVM and ANN demonstrated better
predictive potential due to their ability to learn complex, nonlinear relationships.

Sepsis mortality prediction is a particular concern, especially in ICUs. In an obser-
vational study [26], a comparison of five different MLMs was conducted to show which
one performed the best. Gradient boosting decision tree (GBDT), logistic regression (LR),
k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM) were
involved in a population of ICU septic patients. In the final results, GBDT outperformed all
other models, with the highest performance metrics (AUROC 0.992, F1 Score 0.933), and it
ranked the most critical predictors of mortality, including age, Glascow Coma Scale, blood
urea nitrogen, lactate, heart rate and blood pressure. GBDT was able to provide excellent
discrimination ability and the best predictive accuracy due to its ability to handle nonlinear
interactions and missing values effectively, and it showed resilience to noise and outliers in
the data. On top of this, the model identified key clinical indicators actionable in clinical
practice (e.g., lactate levels, GCS, and BUN), revealing itself as a real-time clinical decision
support system for ICU teams, enabling personalized risk stratification for septic patients
and timely interventions, thus improving survival rates.

In efforts to improve sepsis outcomes, Adams et al. [27] found that their early warning
system, TREWS (Targeted Real-time Early Warning System), reduced the median time to the
first antibiotic order by 1.85 h. After adjusting for patient severity, TREWS usage showed
improved mortality rates, particularly for high-risk patients flagged by the alert. Reduced
mortality was associated with better SOFA score progression and shorter hospital stays. The
study mitigated potential surveillance bias by including only post-deployment data, though
the authors noted limitations such as restricted markers for alerting, a lack of randomization,
the retrospective identification of sepsis, and insufficient data on antibiotic administration.

Some results [28] suggest that ML models can outperform traditional methods such as
the SOFA score, in terms of both predictive accuracy and interpretability. One example is a
study developing MLMs to predict mortality of patients with sepsis in emergency rooms,
using data collected from a large multicenter cohort (19 hospitals) between 2019 and 2020.
Six models (including XGBoost, CatBoost and LightGBM) were built to analyze 44 clinical
variables, including vital signs, laboratory tests and SOFA score components. The results
show that models based on general clinical variables outperformed those based solely on
the SOFA score, with CatBoost performing best (AUC 0.800). LightGBM and XGBoost
showed similar strong performances (AUC 0.795 and 0.797, respectively). The algorithm
used Shapley Additive Explanations (SHAP) to explain the contribution of individual
variables to prediction, showing that markers such as lactate, blood urea nitrogen and
albumin were the most influential. These key findings align with prior research on the
relevance of those variables in sepsis prognosis.

Jiang et al. [29] focused on analyzing sepsis and sepsis death risk factors in ICUs by
using different MLMs on a patient dataset (MIMIC-IV). LR with Python sklearn and GBDT
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boosted with the XGBoost package were trained and tested to solve clustered real-time
sepsis prediction and septic mortality prediction. The contribution of every feature was
analyzed by SHAP. The models achieved an AUROC of 0.745 on sepsis prediction (95%
CI: 0.731–0.759) and an AUROC of 0.8 on sepsis death prediction (95% CI: 0.770–0.828). The
major contributing risk factors, such as maximum pO2 and temperature, in predicting sepsis
and the mean DBP and MBP in predicting septic death made relative risk contributions
to the outcome. The results suggest that oxygen exchange parameters (e.g., pO2, SpO2,
AaDO2) were the major contributors to sepsis prediction, while circulatory variables and
anion gap contributed to septic death prediction. These factors were unidirectionally
correlated with risk alterations. SHAP analysis revealed that impaired temperature and
anion gap increased risk for sepsis shortly before diagnosis, while fluctuations in diastolic
blood pressure and mean blood pressure, and significant increases in the anion gap, were
observed for septic death. Among patients with septic death, two distinct groups (A and B)
were identified, whereas group A displayed a higher contribution from blood urea nitrogen
and anion gap, while group B showed a stronger association with circulatory factors.

The use of this interpretable ML provided real-time risk-monitoring information
related to sepsis progression and mortality, and allowed us to cluster differentiated pheno-
types, offering potential for timely intervention and tailored therapeutic strategies (e.g.,
organ support for Group A, vasoactive agents for Group B).

A recent study by Boussina et al. [5] evaluated the COMPOSER deep learning model’s
effectiveness in early sepsis diagnosis, applied to 6217 patients across two emergency de-
partments at the University of California, San Diego. The model achieved a 1.9% reduction
in sepsis-related mortality and a 5% improvement in treatment protocol adherence, with
reduced organ damage within 72 h of sepsis onset, as indicated by SOFA scores. These find-
ings support AI’s potential to improve clinical outcomes, though the authors stress the need
for further validation across different healthcare settings and larger patient populations.

A further study from 2024 [30] describes the development and validation of MLM
(XGBoost) to predict hospital mortality in patients with sepsis. Twelve clinical parameters
were selected via LASSO regression to construct seven classification models. XGBoost
showed the best performance, with an area under the ROC curve of 0.94, outperforming
traditional methods such as the SOFA score. Model interpretation was facilitated using
SHAP (Shapley Additive Explanations), which identified the main predictors of mortality as
age, aspartate aminotransferase (AST), invasive ventilatory treatment, blood urea nitrogen
(BUN) and neutrophil-to-lymphocyte ratio (NLR). The results suggest that integrating
inflammatory biomarkers with ML algorithms can significantly improve predictive ability
compared to conventional approaches.

An interesting paper [31] explores the use of AI to predict the risk of death in children
with sepsis admitted to pediatric intensive care units (PICUs). Six machine learning
methods including Artificial Neural Networks (ANN), support vector machines (SVM)
and decision trees were used and compared on a retrospective dataset of 516 children from
two hospitals. ANN proved to be the most effective method, with an accuracy of 0.96 in
the test set and an AUC of 0.962, outperforming the other algorithms. The ANN model
used a TensorFlow framework, structured with three fully connected layers, optimized
for binary prediction (survival or death). Twelve clinical and laboratory parameters were
analyzed, including lactate, blood pressure and pediatric SOFA index. ANN, compared to
other scoring models such as SOFA, proved to have greater predictive power, specificity
(0.99) and sensitivity (0.50), making it particularly suitable for the management of pediatric
sepsis. The study concludes that the use of AI in PICUs may improve the ability to identify
children at high risk of mortality early, facilitating targeted clinical interventions, even if it
still needs further studies and external validation.
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2.4. Personalized Treatment of Sepsis

Sepsis treatment is often complicated by diverse phenotypes and variable patient re-
sponses. AI has shown potential to enhance therapeutic strategies by enabling personalized
treatment tailored to each patient’s unique characteristics.

Bataille et al. [32] explored using ML to better predict fluid responsiveness in patients
with severe sepsis or septic shock, where precise fluid management is critical. Tradition-
ally, fluid responsiveness is assessed with passive leg raising (PLR), but this method has
limitations in certain patients. To overcome these, the researchers applied AI to echocar-
diographic data from 100 ICU patients. The MLMs developed, including neural networks
and advanced regressions, were more accurate than traditional methods in predicting
whether patients would benefit from fluid administration, identifying complex physiologi-
cal patterns otherwise undetectable. This approach could improve fluid management in
septic patients, reducing complications from improper fluid administration and ultimately
enhancing survival rates and quality of care.

A further study [33] analyzes the clinical factors associated with the rapid treatment
of sepsis, using MLM to identify the most relevant characteristics. The retrospective
analysis is based on clinical data of adult patients (≥18 years) admitted to emergency
departments over a 10-year period. Two Gradient Boosting Machine (GBM) models were
developed for subgroups defined by the presence or absence of hypotension or elevated
lactate (≥4 mmol/L). The models achieved high predictive performance with AUROCs of
0.91 and 0.84. Here, 760 variables were considered, including demographic data, vital signs,
laboratory tests, comorbidities and diagnoses present at admission. In non-hypothesis
patients, initial physiological parameters were more relevant, whereas in patients with
fluid bolus requirements, extreme values (minimum and maximum) prevailed. The most
impactful common characteristics included heart rate, temperature and blood pressure.
The results suggest that ML can support clinical decisions, improving the speed of sepsis
treatment by adaptive tools in EMRs.

Jie Yang et al. [34] detailed AI’s role in personalized sepsis treatment, particularly
through reinforcement learning models. These models analyze previous therapeutic de-
cisions and suggest optimal treatments based on patient-specific data, such as fluid and
vasopressor administration—key interventions in sepsis management. AI has been shown
to reduce the risk of fluid overload, a common sepsis complication, by enhancing clinical
decision accuracy and better predicting patients’ responses to resuscitation. Real-time
treatment response assessments further allow clinicians to adapt care promptly, improving
therapeutic outcomes. This approach supports precision medicine by identifying patient
subgroups that may benefit from tailored resuscitation strategies, especially for those with
complex clinical manifestations where standardized treatments may be inadequate.

Ates et al. [35] recently presented a pioneering application of MLMs in personalized
treatment of sepsis in the field of antibiotic therapy. They proposed MLMs as data-driven
methods to find the connections between therapy effectiveness and patient data, managing
to distinguish between healthy and sick states. By using this method, significant differences
were observed between 48 and 72 h after dose adjustments (day 3–4). Cumulative analysis
showed TDM led to lower mortality compared to the fixed-dose group, particularly within
the critical first 72 h of sepsis management. Patients in the TDM group also experienced
better recovery trajectories over 10 days, and the median SOFA scores upon ICU discharge
were lower for TDM patients, suggesting less organ dysfunction. The method identified
two recovery patterns: short-term benefits, with faster ICU discharge for a subset of TDM
patients; long-term benefits, undergoing enhanced recovery rates and lower mortality in
patients needing extended care. The evolutionary algorithm selected features like blood
pressure, body temperature, creatinine, lactate, and piperacillin levels as critical for tracking
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recovery. This provided, indirectly, to disease classification and severity stratification, as
well as offering a continuous and data-driven “multidimensional SOFA score”, offering a
more nuanced view of patient states than conventional scores.

2.5. Relation Between AI and Providers: Strenghts and Possible Biases

MLMs’ performance can be influenced by the clinicians who use them, representing
both advantages and limitations. Gonçalves et al. [36] documented nurses’ experiences with
Laura®, a data-mining robot for early sepsis detection. Laura alerts healthcare professionals
when patients’ MEWS (Modified Early Warning Score) indicators change, allowing for
timely intervention. The study’s results were promising, as Laura improved diagnostic
accuracy and professional satisfaction. However, challenges included the need for rapid
data recording, healthcare professionals’ training in ML model use, and addressing distrust
in the model’s accuracy.

Table 1. Selected studies for the review, including authors, AI models used, study design and study
purpose in chronological order.

Title Author Year AI-Driven Models Used Study Design and Purpose

Impact of a deep learning sepsis
prediction model on quality of care

and survival
Boussina et al. [5] 2024 Deep-learning model

(COMPOSER)

Observational study
Impact of AI prediction tool on

real-world patient outcomes

A Machine Learning Algorithm to
Predict Severe Sepsis and Septic

Shock: Development,
Implementation, and Impact on

Clinical Practice

Giannini et al. [8] 2019

Random forest classifier
(machine learning
algorithm) trained,

validated and compared
with clinical team

Retrospective and observational
study

Predict severe sepsis and septic
shock and evaluate the impact on

clinical practice and patient
outcomes

Evaluation of a machine learning
algorithm for up to 48-h advance

prediction of sepsis using six
vital signs

Barton et al. [9] 2019
Gradient-enhanced trees

implemented with
XGBoost

Retrospective study with
cross-validation

Early prediction of sepsis onset for
early intervention and

optimization of clinical monitoring

An Explainable Artificial
Intelligence Predictor for Early

Detection of Sepsis
Yang et al. [10] 2020 XGBoost (Gradient

Boosting Trees)

Retrospective observational study
Early and real-time prediction of

sepsis in the ICU with
interpretability for clinical decision

support

Early detection of sepsis utilizing
deep learning on electronic health

record event sequences.
Lauritsen et al. [11] 2020 CNN-LSTM (deep

learning architecture)

Retrospective multicenter cohort
study

Early detection of sepsis (up to 24
h prior)

DeepAISE—An interpretable and
recurrent neural survival model

for early prediction of sepsis.
Shashikumar et al. [12] 2021

Recurrent neural survival
model DeepAISE (Deep

Artificial Intelligence
Sepsis Expert)

Comparative study with other four
models for early prediction of

sepsis

Effect of a sepsis prediction
algorithm on patient mortality,

length of stay and readmission: a
prospective multicenter clinical

outcomes evaluation of real-world
patient data from US hospitals.

Burdick et al. [13] 2020 Gradient-boosted trees
(XGBoost)

Multicenter prospective
observational study

Predict severe sepsis onset,
improve clinical outcomes

(mortality, length of stay, and
readmissions)

A Machine Learning Sepsis
Prediction Algorithm for Intended
Intensive Care Unit Use (NAVOY
Sepsis): Proof-of-Concept Study

Persson et al. [14] 2021

NAVOY Sepsis, prediction
MLM crafted by using
convolutional neural

networks

Develop a high-performance ML
sepsis prediction model viable and
sharable from other hospital ICUs

Development and validation of a
sepsis risk index supporting early

identification of ICU-acquired
sepsis: an observational study

Pappada et al. [15] 2024

Multilayer perceptron
(MLP) artificial neural

networks with
Levenberg–Marquardt

algorithm

Retrospective study
Early diagnosis and risk prediction

of sepsis and septic shock
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Table 1. Cont.

Title Author Year AI-Driven Models Used Study Design and Purpose

FDA-Authorized AI/ML Tool for
Sepsis Prediction: Development

and Validation
Bhargava et al. [16] Random forest calibrated

Multicenter prospective
observational study

Predict sepsis within 24 h and
stratify patients according to risk

to optimize clinical decisions

Diagnostic and prognostic
capabilities of a biomarker and
EMR-based machine learning

algorithm for sepsis

Taneja et al. [17] 2021 Random forest

Two-center, observational cohort
study

Diagnose sepsis, stratify severity,
and predict outcomes (hospital
stay, mortality, readmissions)

A Machine Learning Model for
Accurate Prediction of Sepsis in

ICU Patients
Wang D. et al. [18] 2021 Random forest

Randomized controlled trial
Develop an AI algorithm that can

predict sepsis early

Diagnostic performance of
machine learning models using

cell population data for the
detection of sepsis: a
comparative study.

Aguirre and Urrechaga [19] 2022

Naïve Bayes (NB),
K-nearest neighbor

(KNN), support vector
machines (SVM), random

forest (RF), multi-layer
perceptron (MLP),

extreme gradient boosting
machine (XGBOOST)

Prospective observational study
Compare MLMs with classic LR
model for diagnosing suspected

sepsis using data from blood tests

Predicting sepsis onset using a
machine learned causal

probabilistic network algorithm
based on electronic health

records data

Valik et al. [20] 2023
SepsisFinder, a casual
probabilistic network

model

Observational cohort study
Compare SepsisFinder’s ability to
recognize sepsis from EHR data

before NEWS2 used by clinicians

Real-time machine
learning-assisted sepsis alert

enhances the timeliness of
antibiotic administration and

diagnostic accuracy in emergency
department patients with sepsis: a

cluster-randomized trial

Kijpaisalratana et al. [21] 2024 Random forest

Cluster-randomized trial
Early diagnosis and improved

timeliness of antibiotic treatment
in patients with sepsis

Machine Learning Algorithms
Identify Pathogen-Specific
Biomarkers of Clinical and

Metabolomic Characteristics in
Septic Patients with
Bacterial Infections

Zheng et al. [22] 2020

XGBoost combined with
variance threshold,

maximal information
coefficient (MIC) and relief

Retrospective observational study
Develop an accurate diagnosis
strategy among septic patients

Predicting Sepsis Mortality in a
Population-Based National

Database: Machine
Learning Approach

Park YJ et al. [24] 2022

Logistic regression with
Least Absolute Shrinkage

and Selection Operator
(LASSO) regularization,

random forest (RF),
gradient-boosted decision

tree (Xg-boost), deep
neural network (DNN),

Super Learner (SL) model

Observational study
Comparison between performance
of conventional logistic regression
approach and common MLMs in

predicting sepsis mortality in
retrospective data of patients

diagnosed with sepsis and
hospitalized

Supervised classification
techniques for prediction of
mortality in adult patients

with sepsis

Rodríguez et al. [25] 2021

C4.5
Decision Tree,

random forest, Artificial
Neural Networks (ANN),
support vector machine

(SVM) models

Prospective multicenter cohort
study

Analyze and compare applicability
and performance of various MLMs
for classification and prediction of
mortality in adult septic patients

Predicting in-hospital mortality in
ICU patients

with sepsis using gradient
boosting decision tree

Li et al. [26] 2021

Gradient boosting
decision tree (GBDT),

logistic regression (LR),
k-nearest neighbor (KNN),

random forest (RF) and
support vector machine

(SVM)

Observational study
Compare different MLMs to find

the outperformer in selecting
clinical and metabolomic features
that distinguished septic patients

from controls
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Table 1. Cont.

Title Author Year AI-Driven Models Used Study Design and Purpose

Prospective, multi-site study of
patient outcomes after

implementation of the TREWS
machine learning-based early

warning system for sepsis

Adams, Henry et al. [27] 2022

Brand new ML-based
clinical decision support

tool for early prediction of
sepsis, Targeted Real-Time

Early Warning System
(TREWS)

Prospective multicentric study
Examine the association between
patient outcomes and provider

interaction with TREWS

Early Prediction of Mortality for
Septic Patients Visiting Emergency

Room Based on Explainable
Machine Learning: A Real-World

Multicenter Study

Park SW et al. [28] 2024 CatBoost, XGBoost and
LightGBM

Multicenter prospective study
with cross-validation

Early mortality prediction in
patients with sepsis to support

clinical management and improve
resource allocation

Interpretable machine-learning
model for real-time, clustered risk
factor analysis of sepsis and septic

death in critical care

Jiang et al. [29] 2023

Logistic Regression Model
(LRM) implemented with
Python sklearn package,

GBDT implemented using
the XGBoost package

Retrospective observational cohort
study

Analyze sepsis and sepsis death
risk factors to cluster differentiated

phenotypes and offer tailored
therapeutic strategies

Predicting sepsis in-hospital
mortality with machine learning: a
multi-center study using clinical

and inflammatory biomarkers

Zhang et al. [30] 2024 XGBoost (eXtreme
Gradient Boosting)

Multicenter retrospective study
Predict hospital mortality in

patients with sepsis and improve
clinical decision-making

Establishment and Verification of
an Artificial Intelligence Prediction

Model for Children with Sepsis
Wang L et al. [31] 2024 Artificial Neural Network

(ANN)

Multicenter retrospective study
Predicting the risk of death in

children with sepsis to support
clinical decisions and improve

prognosis

Machine learning methods to
improve bedside fluid

responsiveness prediction in
severe sepsis or septic shock: an

observational study.

Bataille et al. [32] 2021

Regression tree (CART),
partial least-squares

regression (PLS), neural
network (NNET), and

linear discriminant
analysis (LDA)

Observational study
Machine learning as a tool for

predicting fluid responsiveness
through transthoracic

echocardiography (TTE) in
critically ill patients

Clinical factors associated with
rapid treatment of sepsis Song et al. [33] 2021 Gradient Boosting

Machine (GBM)

Retrospective observational study
Identifying clinical factors

influencing the rapid treatment of
sepsis and improving clinical

management through adaptive
alerting tools in EMRs

Unraveling the impact of
therapeutic drug monitoring via

machine learning for patients
with sepsis

Ates et al. [35] 2024 Different MLMs studied

Randomized controlled trial
Propose a machine learning

approach to measure the impact of
therapeutic drug monitoring

(TDM) on
sepsis recovery

Factors driving provider adoption
of the TREWS machine

learning-based early warning
system and its effects on sepsis

treatment timing

Henry et al. [37] 2022

Brand new ML-based
clinical decision support

tool for early prediction of
sepsis, Targeted Real-Time

Early Warning System
(TREWS)

Retrospective and observational
study

Analyze TREWS performance and
impact of providers on the latter

A study by Henry et al. [37] examined how provider interaction could influence the
TREWS model’s performance. Despite encouraging results, they observed that providers’
cognitive biases affected alert interactions. For example, clinicians often dismissed alerts
for younger patients or during peak hours, while responding more promptly to alerts
for older patients. Limitations included the retrospective design, limited alert criteria,
and lack of generalizability. Future improvements should focus on enhancing providers’
familiarity and comfort with AI tools, to foster adoption in clinical workflows. This
study illustrates how clinician-related factors can significantly bias the performance of
well-designed models.
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2.6. Safety

In the context of AI systems, reliability is primarily defined by the reduction of false
positives, compliance with regulatory standards, and the mitigation of clinical risks such as
alarm fatigue. It is evaluated using performance metrics such as the area under the ROC
curve (AUROC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), F1 Score,
Log Loss, or the ability to generalize to external datasets.

Among the models discussed, the Gradient Boosted Machine Learning Algorithm
(GBMLA) for sepsis prediction seems to stand out for its high specificity, which reduces false
positives and, consequently, alarm fatigue in hospital environments. Adherence to HIPAA
standards for data de-identification ensures patient privacy protection, a critical safety
consideration. However, the generalizability of models developed using Gradient Boost
remains limited, as most results are derived from retrospective studies in academic settings.
This raises concerns about their applicability in nonacademic or real-time clinical scenarios.

The Random Forest-Based Sepsis ImmunoScore model holds FDA approval, em-
phasizing its safety and efficacy. Its integration with electronic medical records (EMRs)
reduces manual errors, enhances clinical safety and enables more accurate risk stratification.
Nonetheless, external validation has been confined to specific US hospitals, limiting its
generalizability to global healthcare contexts and increasing the risk of overfitting [16].

As previously mentioned, Giannini et al. [8] presented an algorithm with very high
specificity (98%). However, its low sensitivity (26%) highlights a significant limitation—the
potential to miss sepsis cases that could benefit from early intervention. This underscores
the inherent challenge of balancing reduced alerts with the need to identify all critical cases.
Another safety concern involves integrating the algorithm into clinical workflows—a key
point emphasized in the study to prevent automation from negatively impacting human
decision-making. The retrospective nature of validation and reliance on structured electronic
health record data introduces uncertainty about its applicability in unstructured settings, or
where data may be incomplete or inaccurate.

A recurring theme emerges from these examples: while MLMs show significant
promise for improving patient safety and diagnostic accuracy, critical challenges remain.
Chief among these is achieving a balance between sensitivity and specificity—essential to
avoid missing sepsis diagnoses or generating excessive false positives.

Safety, however, is a multifaceted concept that extends beyond reducing false positives.
It includes adaptability to real-world clinical environments without causing unintended
consequences such as overtreatment or unnecessary antibiotic use. For instance, alert
fatigue may diminish clinical staff responsiveness, while low sensitivity could delay cru-
cial interventions.

Importantly, none of the studies reported any direct harm to patients during their
use. The primary concerns revolve around data management, privacy protection, and
workflow integration.

3. Discussion
In summary, AI and various MLMs have demonstrated significant potential in man-

aging sepsis by enhancing the ability to predict, diagnose, and provide individualized
treatment. MLMs have shown high accuracy in early prediction, with some algorithms ca-
pable of anticipating sepsis onset several hours in advance. Early detection offers clinicians
crucial additional time for clinical decisions, potentially altering patient outcomes [38].

Two main approaches have emerged in sepsis prediction. The first leverages EHR
data, which include longitudinal clinical and laboratory data, while the second relies on the
continuous monitoring of vital parameters, such as heart rate, blood pressure, and oxygen
saturation. These methods have complementary advantages: while EHR data provide
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a historical and contextual overview of a patient’s status, continuous monitoring allows
rapid changes to be detected. However, few models integrate both sources; this approach
could improve predictive accuracy even more.

From a diagnostic perspective, AI has demonstrated advantages over traditional
scoring systems, such as SIRS, SOFA, and qSOFA, by identifying sepsis more quickly and
accurately. In fact, with the ability to detect complex, nonlinear patterns, these algorithms
achieve higher AUROCs, positioning themselves as promising tools for sepsis diagnosis
and risk stratification.

Studies report an increased sensitivity and specificity of MLMs in diagnosing sepsis
within settings like ICUs and EDs, as well as reductions in healthcare costs, hospital and
ICU lengths of stay, complication rates, morbidity, and mortality—contributing to overall
improved patient outcomes. The effectiveness of AI models also depends on the clinical
setting. In ICUs, the main goal is to predict the outcome, and to optimize the treatment
or determine its timing. On the other hand, in the EDs, sepsis prediction can guide the
patient pathway, determining whether a high-risk patient should be transferred directly to
the ICU or, in the case of lower risk, to less critical or sub-intensive wards. This means that
the models should be not only center-specific, but also setting-specific.

Overall, AI presents substantial opportunities for personalizing sepsis treatment,
enabling the timely initiation of antibiotic therapy and facilitating precise therapeutic
management tailored to individual patient phenotypes. In all these scenarios, MLMs act
not only as a prediction tool to predict at-risk patients, but also a pivotal decision-support
tool to properly settle patient treatments and destinations [39].

Despite these advancements, the practical implementation of MLMs remains complex
and poses critical challenges. Model performance for early sepsis prediction varies by clini-
cal setting, generally showing the best results in environments with access to substantial,
real-time clinical data, such as ICUs and EDs. This variability underscores that successful
AI integration depends not only on algorithm quality, but also on the clinical setting and
data accessibility. EHR data acquisition is typically straightforward, providing a foundation
for effective model application across contexts. Key challenges include optimizing how
MLMs utilize information, overcoming technical limitations in hospital IT integration, and
accounting for costs, infrastructure, and necessary protocols.

Adoption among clinicians is another challenge, as many MLMs lack interpretability.
The complexity of these models, often perceived as “black boxes”, can create reluctance
among providers to incorporate them into daily practice. Some clinicians may be deterred
by the risk of model error, which hinders successful implementation, though exceptions
exist for particularly user-friendly models or those with high provider interest.

Elements like SHAP (Shapley Additive Explanation) values have been integrated to
address this, helping to clarify the key variables influencing predictions. For instance, the
DeepAISE model not only predicts sepsis risk, but also provides real-time analysis of risk
factors, facilitating clinical adoption.

Behavioral obstacles also play a role. Studies, such as that by Henry et al., reveal
that AI-generated alerts are often ignored during peak workload hours or in younger
patients, highlighting the need for targeted educational initiatives to build confidence
among healthcare providers.

A further issue is the low sensitivity and high false-positive rates in certain models.
This imbalance between sensitivity and specificity poses significant clinical challenges;
while false positives are minimized, the model may still fail to identify all sepsis cases,
diminishing early prevention effectiveness. Schinkel et al. [40] highlights that false posi-
tives can lead to unnecessary treatments, antibiotic overuse, and antimicrobial resistance,



J. Clin. Med. 2025, 14, 286 16 of 20

straining healthcare resources. The authors emphasize the need for randomized clinical
trials to validate these models’ effectiveness on a larger scale.

The transferability of these models to other healthcare settings or broader populations
also requires rigorous external validation. A notable example is the study by Wong A.
et al. [41], who attempted the external validation of the Epic Sepsis Model (ESM) to
evaluate its impact on timely antibiotic administration. Unfortunately, their large-scale
retrospective cohort study found that ESM had low sensitivity compared to existing clinical
practice, causing significant alert fatigue without providing added clinical benefits. External
validation is essential to assess a model’s reproducibility and generalizability prior to
clinical adoption [39,42]. Nevertheless, it may not be possible to create a “universal” model
due to center-specific variables.

We must be aware that each center may need to train its own model.
The integration of AI-based devices into clinical practice, particularly for complex

conditions like sepsis, raises significant regulatory challenges. While AI holds immense
promise, the regulatory frameworks governing its use are still evolving. In the US, the
FDA categorizes AI-based devices as medical devices, requiring rigorous evaluations
for safety, efficacy, and quality. This process includes multi-center validation, proof of
improved clinical outcomes, and reliable operation across diverse settings. For example,
the FDA-approved Sepsis ImmunoScore™ underwent extensive assessment, including
analysis of large datasets and external validation. In Europe, the Medical Device Regulation
(MDR) similarly requires evidence of clinical effectiveness and bias minimization. The
proposed AI Act by the EU further stipulates strict criteria for transparency, safety, and
efficacy, classifying AI systems based on risk levels. AI tools for sepsis, given their critical
clinical applications, would likely fall into the “high-risk” category, necessitating rigorous
validation and continuous audits. Global standardization remains a challenge, complicating
efforts for companies to implement products across jurisdictions. Achieving uniform
regulatory criteria would facilitate the broader adoption of AI technologies.

Beyond device regulation, data protection is crucial. AI models often require access
to sensitive patient data, necessitating compliance with privacy regulations like GDPR in
Europe and HIPAA in the US. Blockchain technology and tokenization, such as through
Non-Fungible Tokens (NFTs), offer innovative solutions for ensuring data ownership and
security. By leveraging blockchain, health information can be securely stored and accessed,
ensuring patient trust and data integrity [7].

Additional challenges include the limited diversity of datasets for model training and
the absence of standardized guidelines for model development, training, and validation in
a healthcare setting. This lack of standardization risks inherent biases, which MLMs could
inadvertently amplify.

Another notable limitation is the fact that some articles base sepsis definition on
Sepsis-2, and some others on Sepsis-3; different studies apply varying clinical thresholds
and diagnostic criteria for training, complicating the comparison of results. This lack of
standardization in sepsis criteria hinders the evaluation of MLMs’ effectiveness and restricts
their large-scale applicability.

In the end, in recent years, several companies have developed medical devices and
software leveraging artificial intelligence (AI) to address the complexities of the early
diagnsis and management of sepsis. Among them, Epic Systems has introduced the Epic
Sepsis Model, one of the first AI algorithms implemented on a large scale. This tool
utilizes electronic health record (EHR) data to identify patients at risk of sepsis. Despite
its widespread adoption, independent validation studies have highlighted significant
limitations, including relatively low sensitivity and a high rate of false positives. These
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issues have raised concerns about the model’s reliability and the potential for alert fatigue
among clinicians [43].

Another prominent model is the Sepsis ImmunoScore™, developed by Prenosis Inc.
and approved by the FDA. This innovative tool combines biomarkers, vital parameters, and
laboratory data to calculate a personalized risk score, categorizing patients into risk levels
ranging from low to very high. When untegrated into EHR systems, it enables the early
identification of at-risk patients, significantly enhancing clinical management. Prenosis
Inc. is recognized as an industry leader due to its focus on utilizing AI technologies for
personalized diagnostic solutions [16].

A significant contribution comes from Sepsis Watch, a system developed by the Duke
University Health System. Implemented in emergency departments, this deep learning
model analyzes clinical data every 15 min, offering early warnings for patients at risk. Its
integration has improved compliance with Surviving Sepsis Campaign guidelines, thus
reducing mortality and enhancing the overall quality of care. Similarly, Dascena’s InSight
system, also FDA-approved, stands out for its ability to predict sepsis up to 48 h before
symptoms appear, showing substantial potential for prevention [44].

Another promising tool, COMPOSER, was developed at UC San Diego Health. This al-
gorithm monitors over 150 clinical variables in real time to identify sepsis risk in emergency
departments. Its implementation has been linked to significant reductions in mortality,
exemplifying the value of AI in optimizing care in critical care settings [5].

Among approved AI solutions, the Targeted Real-Time Early Warning System (TREWS)
stands out for its real-time clinical data analysis and machine learning algorithms, which
help identify sepsis risks and support medical decisions. TREWS has demonstrated sig-
nificant benefits, including reduced antibiotic administration time and improved survival
rates, particularly in high-risk patients [27]. Although widely adopted, the Epic Sepsis
Model’s performance appears inferior to advanced models like TREWS and COMPOSER.

Last but not leats, some models integrate clinical data and biomarkers with advanced
algorithms, such as DeepAISE, which employs recurrent neural networks to provide
accurate, interpretable predictions [12].

Overall, companies, academic institutions, and hospitals are collaborating to develop
increasingly sophisticated tools. Despite these advancements, challenges related to stan-
dardization, validation, and large-scale integration still persist. Nonetheless, there is high
interest in the potential of these technologies to revolutionize sepsis management.

4. Conclusions
AI’s safe and effective application in sepsis management could be realized through

targeted improvements. Collaboration between AI systems and healthcare professionals
could facilitate deeper data analysis, faster processing and optimized early decision-making.
In clinical practice, the best results may be achieved by integrating MLMs as decision-
support tools that complement, rather than replace, clinical judgment. Still, major limits
to a deep comprehension of the algorithm’s output and the lack of generalization of the
models must not be underestimated, making the topic of artificial intelligence ethics worth
examining in depth.
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